Question #222290

Using taylor series expansion obtain a power series solution to the initial value problem

(2x2-3)d2y/dx2-2xdy/dx+y=0 y(0)=1 y'(0)=7


1
Expert's answer
2021-08-08T17:43:04-0400

Solution;

The Taylor's series expansion of f(x) about x=a is;

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...

The series solution about x=0 can be written as;

y(x)=y(0)+y(0)x+y(0)2!x2+y3!x3+...y(x)=y(0)+y'(0)x+\frac{y''(0)}{2!}x^2+\frac{y'''}{3!}x^3+...

Given y(0)=1 and y'(0)=0;

Also;

(2x23)d2ydx22xdydx+y=0(2x^2-3)\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+y=0

At x=0,

(03)d2ydx2(0)(7)+1=0(0-3)\frac{d^2y}{dx^2}-(0)(7)+1=0

3d2ydx2=1-3\frac{d^2y}{dx^2}=-1

y=13y''=\frac13

By distribution,we write the equation as,

2x2d2ydx23d2ydx22xdydx+y=02x^2\frac{d^2y}{dx^2}-3\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+y=0

Differentiate by applying product rule;

[2x2d3ydx3+d2ydx2(4x)]3d3ydx3[2xd2ydx2+2dydx]+dydx=0[2x^2\frac{d^3y}{dx^3}+\frac{d^2y}{dx^2}(4x)]-3\frac{d^3y}{dx^3}-[2x\frac{d^2y}{dx^2}+2\frac{dy}{dx}]+\frac{dy}{dx}=0

At x=0;

(0+0)3d3ydx3(0+(2×7))+7=0(0+0)-3\frac{d^3y}{dx^3}-(0+(2×7))+7=0

3d3ydx3=21-3\frac{d^3y}{dx^3}=-21

y'''=7

Hence ,the power series solution give by ;

y(x)=y(0)+y(0)x+y"(0)2!x2+y(0)3!x3+...y(x)=y(0)+y'(0)x+\frac{y"(0)}{2!}x^2+\frac{y'''(0)}{3!}x^3+...

By substitution ,will be;

y(x)=1+7x+16x2+76x3+...y(x)=1+7x+\frac16x^2+\frac76x^3+...






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS