Solution;
The Taylor's series expansion of f(x) about x=a is;
f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+...
The series solution about x=0 can be written as;
y(x)=y(0)+y′(0)x+2!y′′(0)x2+3!y′′′x3+...
Given y(0)=1 and y'(0)=0;
Also;
(2x2−3)dx2d2y−2xdxdy+y=0
At x=0,
(0−3)dx2d2y−(0)(7)+1=0
−3dx2d2y=−1
y′′=31
By distribution,we write the equation as,
2x2dx2d2y−3dx2d2y−2xdxdy+y=0
Differentiate by applying product rule;
[2x2dx3d3y+dx2d2y(4x)]−3dx3d3y−[2xdx2d2y+2dxdy]+dxdy=0
At x=0;
(0+0)−3dx3d3y−(0+(2×7))+7=0
−3dx3d3y=−21
y'''=7
Hence ,the power series solution give by ;
y(x)=y(0)+y′(0)x+2!y"(0)x2+3!y′′′(0)x3+...
By substitution ,will be;
y(x)=1+7x+61x2+67x3+...
Comments