Question #222289

Determine the general solution to the exact differential equation

(e2y-ycosxy)dx+(2xe2y-xcosxy+2y)dy=0


1
Expert's answer
2021-08-05T17:16:19-0400
My=2e2ycos(xy)+xysin(xy)\dfrac{\partial M}{\partial y}=2e^{2y}-\cos(xy)+xy\sin(xy)

Nx=2e2ycos(xy)+xysin(xy)\dfrac{\partial N}{\partial x}=2e^{2y}-\cos(xy)+xy\sin(xy)

My=Nx\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}


ux=e2yycos(xy)\dfrac{\partial u}{\partial x}=e^{2y}-y\cos(xy)

uy=2xe2yxcos(xy)+2y\dfrac{\partial u}{\partial y}=2xe^{2y}-x\cos(xy)+2y

u(x,y)=(e2yycos(xy))dx+φ(y)u(x,y)=\int(e^{2y}-y\cos(xy))dx+\varphi(y)

=xe2ysin(xy)+φ(y)=xe^{2y}-\sin(xy)+\varphi(y)

uy=2xe2yxcos(xy)+φ(y)\dfrac{\partial u}{\partial y}=2xe^{2y}-x\cos(xy)+\varphi'(y)

=2xe2yxcos(xy)+2y=2xe^{2y}-x\cos(xy)+2y

φ(y)=2y\varphi'(y)=2y

φ(y)=y2+C1\varphi(y)=y^2+C_1

u=xe2ysin(xy)+y2+C1u=xe^{2y}-\sin(xy)+y^2+C_1


xe2ysin(xy)+y2=Cxe^{2y}-\sin(xy)+y^2=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS