Question #222287

Find the general solution of the equation d2y/dx2+4dy/dx+4y=4e-2x

1
Expert's answer
2021-08-04T18:20:45-0400

Related homogeneous differential equation


y+4y+4y=0y''+4y'+4y=0

The roots of the characteristic equation are


r2+4r+4=0r^2+4r+4=0

(r+2)2=0(r+2)^2=0

r1=r2=2r_1=r_2=-2

The general solution of the homogeneous differential equation is


yh=c1e2x+c2xe2xy_h=c_1e^{-2x}+c_2xe^{-2x}

Find the particular solution of the nonhomogeneous differential equation


yp=Ax2e2xy_p=Ax^2 e^{-2x}

yp=2Axe2x2Ax2e2xy_p'=2Axe^{-2x}-2Ax^2e^{-2x}

yp=2Ae2x8Axe2x+4Ax2e2xy_p''=2Ae^{-2x}-8Axe^{-2x}+4Ax^2e^{-2x}

Substitute


2Ae2x8Axe2x+4Ax2e2x2Ae^{-2x}-8Axe^{-2x}+4Ax^2e^{-2x}

+8Axe2x8Ax2e2x+4Ax2e2x=4e2x+8Axe^{-2x}-8Ax^2e^{-2x}+4Ax^2 e^{-2x}=4e^{-2x}


A=2A=2

yp=2x2e2xy_p=2x^2 e^{-2x}

The general solution of the nonhomogeneous differential equation is


y=yh+ypy=y_h+y_p

y=c1e2x+c2xe2x+2x2e2xy=c_1e^{-2x}+c_2xe^{-2x}+2x^2 e^{-2x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS