Question #222285

prove that the substitution u=y1-n reduces the equation dy/dx+p(x)y=Q(x)yn into a linear equation . hence solve the equation dy/dx+y/x=x/y3

1
Expert's answer
2021-08-04T14:38:02-0400

Part 1: provingDivide the equation dydx+P(x)y=Q(x)yn by yn1yndydx+P(x)y1n=Q(x)set u=y1n, dudx=(1n)y1n1dydx11ndudx=1yndydxsubstitute to get 11ndudx+P(x)u=Q(x)dudx+(1n)P(x)u=(1n)Q(x)which is linear in xPart2dydx+P(x)y=Q(x)yndydx+yx=xy3n=3, P(x)=1x, Q(x)=xdudx+(1n)uP(x)=(1n)Q(x)dudx+4ux=4xlet u=vwdudx=Vdwdx+WdvdxsubstituteVdwdx+Wdvdx+4VWx=4xVdwdx+W(dvdx+4vx)=4xtake part in () equals 0 and separate variablesdvdx+4vx=0dvv=4dxxdvv=4dxxln(v)=ln(k)4ln(x)v=kx4substitute v backkx4dwdx=4xkx4dw=4xdxkdw=4x9dxkdw=4x9dxkw=410x10+Cw=1k(410x10+C)substitute u=vw to find original equationu=VW=kx4k(410x10+C)=x4(410x10+C)410x6+Cx4u=y1n=y4We then substitute back y=u14y=(410x6+Cx4)14Divide\ the\ equation\ \frac{dy}{dx}+P(x)y=Q(x)y^{n}\ by\ y^{n}\newline \frac{1}{y^{n}}\frac{dy}{dx}+P(x)y^{1-n}=Q(x)\newline set\ u=y^{1-n},\ \frac{du}{dx}=(1-n)y^{1-n-1}\frac{dy}{dx}\newline \frac{1}{1-n}\frac{du}{dx}=\frac{1}{y^{n}}\frac{dy}{dx}\newline substitute\ to\ get\ \frac{1}{1-n}\frac{du}{dx}+P(x)u=Q(x)\newline \frac{du}{dx}+(1-n)P(x)u=(1-n)Q(x)\newline which\ is\ linear\ in\ x\newline Part 2\newline \frac{dy}{dx}+P(x)y=Q(x)y^{n}\newline \frac{dy}{dx}+\frac{y}{x}=\frac{x}{y^{3}}\newline n=-3,\ P(x)=\frac{1}{x},\ Q(x)=x\newline \frac{du}{dx}+(1-n)uP(x)=(1-n)Q(x)\newline \frac{du}{dx}+\frac{4u}{x}=4x\newline let\ u=vw\newline \frac{du}{dx}=V\frac{dw}{dx}+W\frac{dv}{dx}\newline substitute\newline V\frac{dw}{dx}+W\frac{dv}{dx}+4\frac{VW}{x}=4x\newline V\frac{dw}{dx}+W(\frac{dv}{dx}+\frac{4v}{x})=4x\newline take\ part\ in\ ()\ equals\ 0\ and\ separate\ variables\newline \frac{dv}{dx}+\frac{4v}{x}=0\newline \frac{dv}{v}=\frac{-4dx}{x}\newline \int \frac{dv}{v}=-\int \frac{4dx}{x}\newline ln (v)= ln(k)-4ln(x)\newline v=kx^{-4}\newline substitute\ v\ back\newline kx^{-4}\frac{dw}{dx}=4x\newline kx^{-4}dw=4xdx\newline kdw=4x^{9}dx\newline \int kdw=\int 4x^{9}dx\newline kw=\frac{4}{10}x^{10}+C\newline w=\frac{1}{k}(\frac{4}{10}x^{10}+C)\newline substitute\ u=vw\ to\ find\ original\ equation\newline u=VW=\frac{kx^{-4}}{k}(\frac{4}{10}x^{10}+C)\newline =x^{-4}(\frac{4}{10}x^{10}+C)\newline \frac{4}{10}x^{6}+Cx^{-4}\newline u=y^{1-n}=y^{4}\newline We\ then\ substitute\ back\ y=u^{\frac{1}{4}}\newline y=(\frac{4}{10}x^{6}+Cx^{-4})^{\frac{1}{4}}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS