Part 1: provingDivide the equation dxdy+P(x)y=Q(x)yn by ynyn1dxdy+P(x)y1−n=Q(x)set u=y1−n, dxdu=(1−n)y1−n−1dxdy1−n1dxdu=yn1dxdysubstitute to get 1−n1dxdu+P(x)u=Q(x)dxdu+(1−n)P(x)u=(1−n)Q(x)which is linear in xPart2dxdy+P(x)y=Q(x)yndxdy+xy=y3xn=−3, P(x)=x1, Q(x)=xdxdu+(1−n)uP(x)=(1−n)Q(x)dxdu+x4u=4xlet u=vwdxdu=Vdxdw+WdxdvsubstituteVdxdw+Wdxdv+4xVW=4xVdxdw+W(dxdv+x4v)=4xtake part in () equals 0 and separate variablesdxdv+x4v=0vdv=x−4dx∫vdv=−∫x4dxln(v)=ln(k)−4ln(x)v=kx−4substitute v backkx−4dxdw=4xkx−4dw=4xdxkdw=4x9dx∫kdw=∫4x9dxkw=104x10+Cw=k1(104x10+C)substitute u=vw to find original equationu=VW=kkx−4(104x10+C)=x−4(104x10+C)104x6+Cx−4u=y1−n=y4We then substitute back y=u41y=(104x6+Cx−4)41
Comments