Question #222281

using the method of variation of parameters to determine the solution to the equation

d2y/dx2-6dy/dx+9y=e3x/x3

1
Expert's answer
2021-08-08T17:02:52-0400

Given the equation:


d2y(x)dx26dy(x)dx+9y(x)=e3xx3:\frac{d^{2} y(x)}{d x^{2}}-6 \frac{d y(x)}{d x}+9 y(x)=\frac{e^{3 x}}{x^{3}} :

The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving


d2y(x)dx26dy(x)dx+9y(x)=0\frac{d^{2} y(x)}{d x^{2}}-6 \frac{d y(x)}{d x}+9 y(x)=0

Assume a solution will be proportional to eλxe^{\lambda x} for some constant λ\lambda . Substitute y(x)=eλxy(x)=e^{\lambda x} into the differential equation:


d2dx2(exx)6ddx(eλx)+9eλx=0\frac{d^{2}}{d x^{2}}\left(e^{x x}\right)-6 \frac{d}{d x}\left(e^{\lambda x}\right)+9 e^{\lambda x}=0

Substitute


d2dx2(eλx)=λ2eλx\frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)=\lambda^{2} e^{\lambda x}

and


ddx(eλx)=λeλx\frac{d}{d x}\left(e^{\lambda x}\right)=\lambda e^{\lambda x}

We have:



λ2eλx6λeλx+9eλx=0\lambda^{2} e^{\lambda x}-6 \lambda e^{\lambda x}+9 e^{\lambda x}=0


Factor out eλx\boldsymbol{e}^{\boldsymbol{\lambda x}} :


(λ26λ+9)eλx=0\left(\lambda^{2}-6 \lambda+9\right) e^{\lambda x}=0

Since eλx0e^{\lambda x} \neq 0 for any finite λ\lambda , the zeros must come from the polynomial:


λ26λ+9=0\lambda^2 - 6\lambda+9=0

Factor:


(λ3)2=0(\lambda-3)^2=0

Solving for λ\lambda we get:


λ=3 twice\lambda= 3 \text{ twice}

The general solution of the equation is:


y(x)=y1(x)+y2(x)=c1e3x+c2e3xxy(x) = y_1(x) + y_2(x) = c_1e^{3x}+ c_2e^{3x}x



We determine the particular solution to


d2y(x)dx26dy(x)dx+9y(x)=e3xx3\frac{d^{2} y(x)}{d x^{2}}-6 \frac{d y(x)}{d x}+9 y(x)=\frac{e^{3 x}}{x^{3}}

by variation of parameters.


We list the basis solutions in yc(x)y_c(x) :


yb1(x)=e3x and yb2(x)=e3xxy_{b_{1}}(x) = e^{3x} \text{ and } y_{b_{2}}(x) = e^{3x} x

Compute the Wronskian of yb1(x) and yb2(x):y_{b_{1}}(x) \text{ and } y_{b_{2}}(x) :



W(x)=e3xe3xxddx(e3x)ddx(e3xx)=e3xe3xx3e3xe3x+3e3xx=e6xW(x)=\left|\begin{array}{cc}e^{3 x} & e^{3 x} x \\ \frac{d}{d x}\left(e^{3 x}\right) & \frac{d}{d x}\left(e^{3 x} x\right)\end{array}\right|=\left|\begin{array}{cc}e^{3 x} & e^{3 x} x \\ 3 e^{3 x} & e^{3 x}+3 e^{3 x} x\end{array}\right|=e^{6 x}

Let f(x)=e3xx3:\text{Let }f(x)=\frac{e^{3 x}}{x^{3}}:


Let


v1(x)=f(x)yb2(x)w(x)dxv_{1}(x)=-\int \frac{f(x) y_{b_{2}}(x)}{w(x)} d x

and


v2(x)=f(x)yb(x)w(x)dxv_{2}(x)=\int \frac{f(x) y_{b}(x)}{w(x)} d x

The particular solution will be given by:


yp(x)=v1(x)yb1(x)+v2(x)yb2(x)y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)

Compute v1(x)v_{1}(x) :


v1(x)=1x2dx=1xv_{1}(x)=-\int \frac{1}{x^{2}} d x=\frac{1}{x}

Compute v2(x)v_{2}(x) :


v2(x)=1x3dx=12x2v_{2}(x)=\int \frac{1}{x^{3}} d x=-\frac{1}{2 x^{2}}

The particular solution is thus:


yp(x)=v1(x)yb1(x)+v2(x)yb2(x)=e3xxe3x2x=e3x2xy_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)=\frac{e^{3 x}}{x}-\frac{e^{3 x}}{2 x}=\frac{e^{3 x}}{2 x}

The general solution is therefore:


y(x)=yc(x)+yp(x)=c1e3x+c2e3xx+e3x2xy(x) = y_c(x) + y_p(x) = c_1e^{3x}+ c_2e^{3x}x +\frac{e^{3 x}}{2 x}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS