Given the equation:
d 2 y ( x ) d x 2 − 6 d y ( x ) d x + 9 y ( x ) = e 3 x x 3 : \frac{d^{2} y(x)}{d x^{2}}-6 \frac{d y(x)}{d x}+9 y(x)=\frac{e^{3 x}}{x^{3}} : d x 2 d 2 y ( x ) − 6 d x d y ( x ) + 9 y ( x ) = x 3 e 3 x : The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving
d 2 y ( x ) d x 2 − 6 d y ( x ) d x + 9 y ( x ) = 0 \frac{d^{2} y(x)}{d x^{2}}-6 \frac{d y(x)}{d x}+9 y(x)=0 d x 2 d 2 y ( x ) − 6 d x d y ( x ) + 9 y ( x ) = 0 Assume a solution will be proportional to e λ x e^{\lambda x} e λ x for some constant λ \lambda λ . Substitute y ( x ) = e λ x y(x)=e^{\lambda x} y ( x ) = e λ x into the differential equation:
d 2 d x 2 ( e x x ) − 6 d d x ( e λ x ) + 9 e λ x = 0 \frac{d^{2}}{d x^{2}}\left(e^{x x}\right)-6 \frac{d}{d x}\left(e^{\lambda x}\right)+9 e^{\lambda x}=0 d x 2 d 2 ( e xx ) − 6 d x d ( e λ x ) + 9 e λ x = 0 Substitute
d 2 d x 2 ( e λ x ) = λ 2 e λ x \frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)=\lambda^{2} e^{\lambda x} d x 2 d 2 ( e λ x ) = λ 2 e λ x and
d d x ( e λ x ) = λ e λ x \frac{d}{d x}\left(e^{\lambda x}\right)=\lambda e^{\lambda x} d x d ( e λ x ) = λ e λ x We have:
λ 2 e λ x − 6 λ e λ x + 9 e λ x = 0 \lambda^{2} e^{\lambda x}-6 \lambda e^{\lambda x}+9 e^{\lambda x}=0 λ 2 e λ x − 6 λ e λ x + 9 e λ x = 0
Factor out e λ x \boldsymbol{e}^{\boldsymbol{\lambda x}} e λx :
( λ 2 − 6 λ + 9 ) e λ x = 0 \left(\lambda^{2}-6 \lambda+9\right) e^{\lambda x}=0 ( λ 2 − 6 λ + 9 ) e λ x = 0 Since e λ x ≠ 0 e^{\lambda x} \neq 0 e λ x = 0 for any finite λ \lambda λ , the zeros must come from the polynomial:
λ 2 − 6 λ + 9 = 0 \lambda^2 - 6\lambda+9=0 λ 2 − 6 λ + 9 = 0 Factor:
( λ − 3 ) 2 = 0 (\lambda-3)^2=0 ( λ − 3 ) 2 = 0 Solving for λ \lambda λ we get:
λ = 3 twice \lambda= 3 \text{ twice} λ = 3 twice The general solution of the equation is:
y ( x ) = y 1 ( x ) + y 2 ( x ) = c 1 e 3 x + c 2 e 3 x x y(x) = y_1(x) + y_2(x) = c_1e^{3x}+ c_2e^{3x}x y ( x ) = y 1 ( x ) + y 2 ( x ) = c 1 e 3 x + c 2 e 3 x x
We determine the particular solution to
d 2 y ( x ) d x 2 − 6 d y ( x ) d x + 9 y ( x ) = e 3 x x 3 \frac{d^{2} y(x)}{d x^{2}}-6 \frac{d y(x)}{d x}+9 y(x)=\frac{e^{3 x}}{x^{3}} d x 2 d 2 y ( x ) − 6 d x d y ( x ) + 9 y ( x ) = x 3 e 3 x by variation of parameters.
We list the basis solutions in y c ( x ) y_c(x) y c ( x ) :
y b 1 ( x ) = e 3 x and y b 2 ( x ) = e 3 x x y_{b_{1}}(x) = e^{3x} \text{ and } y_{b_{2}}(x) = e^{3x} x y b 1 ( x ) = e 3 x and y b 2 ( x ) = e 3 x x Compute the Wronskian of y b 1 ( x ) and y b 2 ( x ) : y_{b_{1}}(x) \text{ and } y_{b_{2}}(x) : y b 1 ( x ) and y b 2 ( x ) :
W ( x ) = ∣ e 3 x e 3 x x d d x ( e 3 x ) d d x ( e 3 x x ) ∣ = ∣ e 3 x e 3 x x 3 e 3 x e 3 x + 3 e 3 x x ∣ = e 6 x W(x)=\left|\begin{array}{cc}e^{3 x} & e^{3 x} x \\ \frac{d}{d x}\left(e^{3 x}\right) & \frac{d}{d x}\left(e^{3 x} x\right)\end{array}\right|=\left|\begin{array}{cc}e^{3 x} & e^{3 x} x \\ 3 e^{3 x} & e^{3 x}+3 e^{3 x} x\end{array}\right|=e^{6 x} W ( x ) = ∣ ∣ e 3 x d x d ( e 3 x ) e 3 x x d x d ( e 3 x x ) ∣ ∣ = ∣ ∣ e 3 x 3 e 3 x e 3 x x e 3 x + 3 e 3 x x ∣ ∣ = e 6 x Let f ( x ) = e 3 x x 3 : \text{Let }f(x)=\frac{e^{3 x}}{x^{3}}: Let f ( x ) = x 3 e 3 x :
Let
v 1 ( x ) = − ∫ f ( x ) y b 2 ( x ) w ( x ) d x v_{1}(x)=-\int \frac{f(x) y_{b_{2}}(x)}{w(x)} d x v 1 ( x ) = − ∫ w ( x ) f ( x ) y b 2 ( x ) d x and
v 2 ( x ) = ∫ f ( x ) y b ( x ) w ( x ) d x v_{2}(x)=\int \frac{f(x) y_{b}(x)}{w(x)} d x v 2 ( x ) = ∫ w ( x ) f ( x ) y b ( x ) d x The particular solution will be given by:
y p ( x ) = v 1 ( x ) y b 1 ( x ) + v 2 ( x ) y b 2 ( x ) y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x) y p ( x ) = v 1 ( x ) y b 1 ( x ) + v 2 ( x ) y b 2 ( x ) Compute v 1 ( x ) v_{1}(x) v 1 ( x ) :
v 1 ( x ) = − ∫ 1 x 2 d x = 1 x v_{1}(x)=-\int \frac{1}{x^{2}} d x=\frac{1}{x} v 1 ( x ) = − ∫ x 2 1 d x = x 1 Compute v 2 ( x ) v_{2}(x) v 2 ( x ) :
v 2 ( x ) = ∫ 1 x 3 d x = − 1 2 x 2 v_{2}(x)=\int \frac{1}{x^{3}} d x=-\frac{1}{2 x^{2}} v 2 ( x ) = ∫ x 3 1 d x = − 2 x 2 1 The particular solution is thus:
y p ( x ) = v 1 ( x ) y b 1 ( x ) + v 2 ( x ) y b 2 ( x ) = e 3 x x − e 3 x 2 x = e 3 x 2 x y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)=\frac{e^{3 x}}{x}-\frac{e^{3 x}}{2 x}=\frac{e^{3 x}}{2 x} y p ( x ) = v 1 ( x ) y b 1 ( x ) + v 2 ( x ) y b 2 ( x ) = x e 3 x − 2 x e 3 x = 2 x e 3 x The general solution is therefore:
y ( x ) = y c ( x ) + y p ( x ) = c 1 e 3 x + c 2 e 3 x x + e 3 x 2 x y(x) = y_c(x) + y_p(x) = c_1e^{3x}+ c_2e^{3x}x +\frac{e^{3 x}}{2 x} y ( x ) = y c ( x ) + y p ( x ) = c 1 e 3 x + c 2 e 3 x x + 2 x e 3 x
Comments