Given the equation:
dx2d2y(x)−6dxdy(x)+9y(x)=x3e3x: The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving
dx2d2y(x)−6dxdy(x)+9y(x)=0 Assume a solution will be proportional to eλx for some constant λ . Substitute y(x)=eλx into the differential equation:
dx2d2(exx)−6dxd(eλx)+9eλx=0 Substitute
dx2d2(eλx)=λ2eλxand
dxd(eλx)=λeλx We have:
λ2eλx−6λeλx+9eλx=0
Factor out eλx :
(λ2−6λ+9)eλx=0 Since eλx=0 for any finite λ , the zeros must come from the polynomial:
λ2−6λ+9=0 Factor:
(λ−3)2=0 Solving for λ we get:
λ=3 twice The general solution of the equation is:
y(x)=y1(x)+y2(x)=c1e3x+c2e3xx
We determine the particular solution to
dx2d2y(x)−6dxdy(x)+9y(x)=x3e3x by variation of parameters.
We list the basis solutions in yc(x) :
yb1(x)=e3x and yb2(x)=e3xx Compute the Wronskian of yb1(x) and yb2(x):
W(x)=∣∣e3xdxd(e3x)e3xxdxd(e3xx)∣∣=∣∣e3x3e3xe3xxe3x+3e3xx∣∣=e6x Let f(x)=x3e3x:
Let
v1(x)=−∫w(x)f(x)yb2(x)dx and
v2(x)=∫w(x)f(x)yb(x)dx The particular solution will be given by:
yp(x)=v1(x)yb1(x)+v2(x)yb2(x) Compute v1(x) :
v1(x)=−∫x21dx=x1 Compute v2(x) :
v2(x)=∫x31dx=−2x21 The particular solution is thus:
yp(x)=v1(x)yb1(x)+v2(x)yb2(x)=xe3x−2xe3x=2xe3x The general solution is therefore:
y(x)=yc(x)+yp(x)=c1e3x+c2e3xx+2xe3x
Comments