Question #222279

Determine the power series solution to the equation d2y/dx2+6xdy/dx-4y=0

about the point x0=0


1
Expert's answer
2021-08-09T16:13:22-0400

Given equation


d2ydx2+6xdydx4y=0\dfrac{d^{2}y}{dx^{2}}+6x\dfrac{dy}{dx}-4y=0 about the point x0=0x_{0}=0


Let the solution of given series will be


y=a0xm+a1xm+1+a2xm+2+a3xm+3+....y=a_0x^{m}+a_1x^{m+1}+a_2x^{m+2}+a_3x^{m+3}+....


dydx=ma0xm1+a1(m+2)xm+1+(m+3)a2xm+2+.....\dfrac{dy}{dx}=ma_0x^{m-1}+a_1(m+2)x^{m+1}+(m+3)a_2x^{m+2}+.....


d2ydx2=m(m1)a0xm2+a1(m+2)(m+1)xm+(m+3)a2xm+1+....\dfrac{d^{2}y}{dx^{2}}=m(m-1)a_0x^{m-2}+a_1(m+2)(m+1)x^{m}+(m+3)a_2x^{m+1}+....



Now putting , in the above equation we get -


m(m1)a0xm2+a1(m+2)(m+1)xm+(m+3)a3xm+1+....6x[(ma0xm1+a1(m+2)xm+1+(m+3)a2xm+2+.....)]4[(a0xm+a1xm+1+a2xm+2+a3xm+3+....)]=0m(m-1)a_0x^{m-2}+a_1(m+2)(m+1)x^{m}+(m+3)a_3x^{m+1}+....6x[( ma_0x^{m-1}+a_1(m+2)x^{m+1}+(m+3)a_2x^{m+2}+.....)]-4[(a_0x^{m}+a_1x^{m+1}+a_2x^{m+2}+a_3x^{m+3}+....)]=0

a0xm2[m(m1)]+xm[a1(m+2)(m+1)+6ma04a0]+xm+1[a3(m+3)4a1]+xm+2[6a1(m+2)4a2]+xm+3[6(m+3)a24a3]=0a_0x^{m-2}[m(m-1)]+x^{m}[a_1(m+2)(m+1)+6ma_0-4a_0]+x^{m+1}[a_3(m+3)-4a_1]+x^{m+2}[6a_1(m+2)-4a_2]+x^{m+3}[6(m+3)a_2-4a_3]=0



On equating the coefficient the lower power of x,x, we get


The lowest power of xx is xm2x^{m-2} ,,


On equation the lowest power of xx which is xm2x^{m-2} on both side of equation we get ,


a0m(m1)=0a_0m(m-1)=0 , which gives

a0=0a_0=0 m=0,1m=0,1


The solution of indicial equation , is given as


y=c1y1+c2y2\therefore y=c_1y_1+c_2y_2


Now , on equating the coefficient of xmx^{m} , we get


== [a1(m+2)(m+1)+6ma04a0][a_1(m+2)(m+1)+6ma_0-4a_0] =0=0

== [a1(m+2)(m+1)+a0(6m4)]=0[a_1(m+2)(m+1)+a_0(6m-4)]=0


a1=a0(6m4)(m+2)(m+1)a_1=-\dfrac{a_0(6m-4)}{(m+2)(m+1)}


Now , on equation the coefficient of xm+1,x^{m+1}, we get


a3(m+3)4a1=0a_3(m+3)-4a_1=0


a3=4a1m+3a_3=\dfrac{4a_1}{m+3}


a3=4(m+3)a0(6m4)(m+2)(m+1)a_3=-\dfrac{4}{(m+3)}\dfrac{a_0(6m-4)}{(m+2)(m+1)}


Now , on equating the coefficient of xm+2,x^{m+2}, we get


6a1(m+2)4a2=06a_1(m+2)-4a_2=0


a2=6a1(m+2)4a_2=\dfrac{6a_1(m+2)}{4}


a2=6(m+2)4a0(6m4)(m+2)(m+1)a_2=\dfrac{6(m+2)}{4}\dfrac{a_0(6m-4)}{(m+2)(m+1)}


Thus , for m=0m=0 , we get


y(m=0)=y1=[xm(a0+a1x+a2x2+.....)]m=0y_{(m=0)}=y_1=[x^{m}(a_0+a_1x+a_2x^{2}+.....)]_{m=0}


=a02a0x6a0x2+....=a_0-2a_0x-6a_0x^{2}+....


ym=0=a0(12x6x2+...)y_{m=0}=a_0(1-2x-6x^{2}+...)


ym=1=y2=[xm(a0+a1x+a2x2+...)y_{m=1}=y_2=[x^{m}(a_0+a_1x+a_2x^{2}+...)


y2=x(a0a03x+92a03x2+....)y_2=x(a_0-\dfrac{a_0}{3}x+\dfrac{9}{2}\dfrac{a_0}{3}x^{2}+....)



y2=a0x(1a03x+32a0x2+...)y_2=a_0x(1-\dfrac{a_0}{3}x+\dfrac{3}{2}a_0x^{2}+...)


The solution of given , equation is


y=c1a0(12x6x2)+c2a0x((1a03x+32a0x2+...)y=c_1a_0(1-2x-6x^{2})+c_2a_0x((1-\dfrac{a_0}{3}x+\dfrac{3}{2}a_0x^{2}+...)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS