Given equation
dx2d2y+6xdxdy−4y=0 about the point x0=0
Let the solution of given series will be
y=a0xm+a1xm+1+a2xm+2+a3xm+3+....
dxdy=ma0xm−1+a1(m+2)xm+1+(m+3)a2xm+2+.....
dx2d2y=m(m−1)a0xm−2+a1(m+2)(m+1)xm+(m+3)a2xm+1+....
Now putting , in the above equation we get -
m(m−1)a0xm−2+a1(m+2)(m+1)xm+(m+3)a3xm+1+....6x[(ma0xm−1+a1(m+2)xm+1+(m+3)a2xm+2+.....)]−4[(a0xm+a1xm+1+a2xm+2+a3xm+3+....)]=0
a0xm−2[m(m−1)]+xm[a1(m+2)(m+1)+6ma0−4a0]+xm+1[a3(m+3)−4a1]+xm+2[6a1(m+2)−4a2]+xm+3[6(m+3)a2−4a3]=0
On equating the coefficient the lower power of x, we get
The lowest power of x is xm−2 ,
On equation the lowest power of x which is xm−2 on both side of equation we get ,
a0m(m−1)=0 , which gives
a0=0 m=0,1
The solution of indicial equation , is given as
∴y=c1y1+c2y2
Now , on equating the coefficient of xm , we get
= [a1(m+2)(m+1)+6ma0−4a0] =0
= [a1(m+2)(m+1)+a0(6m−4)]=0
a1=−(m+2)(m+1)a0(6m−4)
Now , on equation the coefficient of xm+1, we get
a3(m+3)−4a1=0
a3=m+34a1
a3=−(m+3)4(m+2)(m+1)a0(6m−4)
Now , on equating the coefficient of xm+2, we get
6a1(m+2)−4a2=0
a2=46a1(m+2)
a2=46(m+2)(m+2)(m+1)a0(6m−4)
Thus , for m=0 , we get
y(m=0)=y1=[xm(a0+a1x+a2x2+.....)]m=0
=a0−2a0x−6a0x2+....
ym=0=a0(1−2x−6x2+...)
ym=1=y2=[xm(a0+a1x+a2x2+...)
y2=x(a0−3a0x+293a0x2+....)
y2=a0x(1−3a0x+23a0x2+...)
The solution of given , equation is
y=c1a0(1−2x−6x2)+c2a0x((1−3a0x+23a0x2+...)
Comments