Question #222278

use the transformation x=et to transform the equation x2d2y/dx2-2xdy/dx+2y=x3 to a linear equation with constant coefficients hence solve the equation


1
Expert's answer
2021-08-02T14:40:34-0400

Let us solve the differential equation x2d2ydx22xdydx+2y=x3.x^2\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+2y=x^3. Let us use the transformation x=et.x=e^t. Then yx=yttx=yt1xt=ytet,y'_x=y'_t\cdot t'_x=y'_t\cdot \frac{1}{x'_t}=y'_t\cdot e^{-t}, yx2=(yt2etytet)et=(yt2yt)e2t.y''_{x^2}=(y''_{t^2}\cdot e^{-t}-y'_t\cdot e^{-t})e^{-t}=(y''_{t^2}-y'_t)e^{-2t}.

It follows that we have the following equation e2t(yt2yt)e2t2etytet+2y=e3t,e^{2t}(y''_{t^2}-y'_t)e^{-2t}-2e^ty'_te^{-t}+2y=e^{3t}, which is equivalent to the equation yt23yt+2y=e3t.y''_{t^2}-3y'_t+2y=e^{3t}. The characteristic equation k23k+2=0k^2-3k+2=0 is equivalent to (k1)(k2)=0,(k-1)(k-2)=0, and hence has the roots k1=1k_1=1 and k2=2.k_2=2. The general solution of the differential equation yt23yt+2y=e3ty''_{t^2}-3y'_t+2y=e^{3t} is y(t)=C1et+C2e2t+yp(t),y(t)=C_1e^t+C_2e^{2t}+y_p(t), where yp(t)=ae3t.y_p(t)=ae^{3t}. It follows that yp(t)=3ae3t,yp(t)=9ae3t.y_p'(t)=3ae^{3t},y_p''(t)=9ae^{3t}. We have that 9ae3t9ae3t+2ae3t=e3t.9ae^{3t}-9ae^{3t}+2ae^{3t}=e^{3t}. Then 2a=1,2a=1, and thus a=12.a=\frac{1}{2}. Therefore, y(t)=C1et+C2e2t+12e3t.y(t)=C_1e^t+C_2e^{2t}+\frac{1}{2}e^{3t}. We conclude that the general solutions of the differential equation x2d2ydx22xdydx+2y=x3x^2\frac{d^2y}{dx^2}-2x\frac{dy}{dx}+2y=x^3 is y(x)=C1x+C2x2+12x3.y(x)=C_1x+C_2x^2+\frac{1}{2}x^3.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS