Question #220727

dr/dΩ+tanΩ=cos2Ω


1
Expert's answer
2021-07-27T09:05:30-0400

Solution;

drdΩ\frac{dr}{d\Omega} =cos2Ω\Omega -tanΩ\Omega

dr=(cos2Ω\Omega -tanΩ\Omega )dΩ\Omega

Integrate both sides;

dr=(cos2ΩtanΩ)dΩ\int{dr}=\int{(cos2\Omega-tan\Omega)}d\Omega

dr=cos2ΩdΩtanΩdΩ\int{dr}=\int{cos2\Omega}d\Omega-\int{tan\Omega}d\Omega

dr=cos2ΩdΩsinΩcosΩdΩ\int dr=\int{cos2\Omega}d\Omega-\int{\frac{sin\Omega}{cos\Omega}}d\Omega

But for the integration of;

sinΩcosΩ\int{\frac{sin\Omega}{cos\Omega}}

take u=cosΩ\Omega ;dudΩ=sinΩ\frac{du}{d\Omega}=-sin\Omega

dΩ=1sinΩdud\Omega=\frac{-1}{sin\Omega}du

Replace back

1udu=ln(u)=ln(cosΩ)\int{\frac{-1}{u}}du=-ln(u)=-ln(cos\Omega) =ln(secΩ)(sec\Omega)

Hence,

r=sin2Ω2ln(secΩ)+Cr=\frac{sin2\Omega}{2}-ln(|sec\Omega|)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS