Solution;
dΩdr =cos2Ω -tanΩ
dr=(cos2Ω -tanΩ )dΩ
Integrate both sides;
∫dr=∫(cos2Ω−tanΩ)dΩ
∫dr=∫cos2ΩdΩ−∫tanΩdΩ
∫dr=∫cos2ΩdΩ−∫cosΩsinΩdΩ
But for the integration of;
∫cosΩsinΩ
take u=cosΩ ;dΩdu=−sinΩ
dΩ=sinΩ−1du
Replace back
∫u−1du=−ln(u)=−ln(cosΩ) =ln(secΩ)
Hence,
r=2sin2Ω−ln(∣secΩ∣)+C
Comments