This is a Pfaffian differential equation in three variables and we must verify its integrabilty and determine its primitive.
(1+yz)dx+z(z−x)dy−(1+xy)dz=0 The necessary and sufficient condition for integrability is
X⋅curlX=0
X=(1+yz,z2−xz,−1−xy), so that
∇×X=∣∣i∂x∂1+yzj∂y∂z2−xzk∂z∂−1−xy∣∣
=i(−x−2z+x)−j(−y−y)+k(−z−z)
=−2zi+2yj−2zk
=(1+yz,z2−xz,−1−xy)⋅(−2z,2y,−2z)
=−2z−2yz2+2yz2−2xyz+2z+2xyz=0Thus, the given equation is integrable.
Solving by Inspection
(1+yz)dx+z(z−x)dy−(1+xy)dz=0
(1+yz)dx−(1+yz)dz+(1+yz)dz
−(1+xy)dz+z(z−x)dy=0
−(1+yz)d(z−x)+y(z−x)dz+z(z−x)dy=0
−(1+yz)d(z−x)+(z−x)d(1+yz)=0
1+yzd(1+yz)−z−xd(z−x)=0 Integrating both sides, we have
ln(1+yz)−ln(z−x)=lnC
1+yz=C(z−x)
z=C−y1+Cx is a solution to the Pfaffian differential equation.
Comments