Question #220266

(1+yz)dx + z(z-x)dy - ( 1 + xy ) dz = 0 verify that the pfaffian differential equation are intergrable and find corresponding integral


1
Expert's answer
2021-07-27T07:50:47-0400

This is a Pfaffian differential equation in three variables and we must verify  its integrabilty and determine its primitive.


(1+yz)dx+z(zx)dy(1+xy)dz=0(1+yz)dx+z(z−x)dy−(1+xy)dz=0

The necessary and sufficient condition for integrability is


XcurlX=0X⋅curlX=0

X=(1+yz,z2xz,1xy),X=(1+yz,z^2-xz,−1−xy),

so that


×X=ijkxyz1+yzz2xz1xy\nabla \times X=\begin{vmatrix} i & j & k \\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\\ 1+yz & z^2-xz & -1-xy \\ \end{vmatrix}


=i(x2z+x)j(yy)+k(zz)=i(-x-2z+x)-j(-y-y)+k(-z-z)

=2zi+2yj2zk=-2zi+2yj-2zk

=(1+yz,z2xz,1xy)(2z,2y,2z)=(1+yz,z^2-xz,−1−xy)\cdot(-2z, 2y, -2z)

=2z2yz2+2yz22xyz+2z+2xyz=0=-2z-2yz^2+2yz^2-2xyz+2z+2xyz=0

Thus, the given equation is integrable.


Solving by Inspection


(1+yz)dx+z(zx)dy(1+xy)dz=0(1+yz)dx+z(z−x)dy−(1+xy)dz=0


(1+yz)dx(1+yz)dz+(1+yz)dz(1+yz)dx-(1+yz)dz+(1+yz)dz

(1+xy)dz+z(zx)dy=0−(1+xy)dz+z(z−x)dy=0

(1+yz)d(zx)+y(zx)dz+z(zx)dy=0-(1+yz)d(z-x)+y(z-x)dz+z(z-x)dy=0

(1+yz)d(zx)+(zx)d(1+yz)=0-(1+yz)d(z-x)+(z-x)d(1+yz)=0

d(1+yz)1+yzd(zx)zx=0\dfrac{d(1+yz)}{1+yz}-\dfrac{d(z-x)}{z-x}=0

Integrating both sides, we have


ln(1+yz)ln(zx)=lnC\ln(1+yz)-\ln(z-x)=\ln C

1+yz=C(zx)1+yz=C(z-x)

z=1+CxCyz=\dfrac{1+Cx}{C-y}

is a solution to the Pfaffian differential equation.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS