Question #220257

(1-x^2)d^2y/dx^2 -2x dy/dx+n(n+1)y=0


1
Expert's answer
2021-07-26T14:37:51-0400

== (1x2)d2ydx22xdydx+n(n+1)y=0(1-x^{2})\dfrac{d^{2}y}{dx^{2}}-2x\dfrac{dy}{dx}+n(n+1)y=0 .........................................1)


This equation is called LEGENDRE'S polynomial equation .


substituting -

=y=a0xm+a1xm+1+a2xm+2+.....(a00),=y=a_0x^m+a_1x^{m+1}+a_2x^{m+2}+.....(a_0\neq0),


Now , series first take of the form -


=a0m(m1)xm2+a1(m+1)mxm1+.......[ar+2(m+r+2)(m+r+1)(m+r)(m+r+1)n(n+1)ar]xm+r+....=0=a_0m(m-1)x^{m-2}+a_1(m+1)mx^{m-1}+.......[a_{r+2}(m+r+2)(m+r+1)-{(m+r)(m+r+1)-n(n+1)}a_r]x^{m+r}+....=0


Equating to zero the co-efficient of the lowest power of xx , i.e. of xm2,x^{m-2}, we get -


=a0m(m1)=0,m=0,1=a_0m(m-1)=0, m=0,1 [[\because a00]a_0\neq0]


Equating to zero the coefficient of xm1 and xmr ,wex^{m-1}\ and \ x^{m-r}\ , we get a1(m+1)m=0.....................2)a_1(m+1)m=0.....................2)



ar+2(m+r+2)(m+r+1)(m+r)(m+r+1)n(n+1)ar=0...............................(3)a_{r+2}(m+r+2)(m+r+1)-{(m+r)(m+r+1)-n(n+1)}a_r=0...............................(3)



When m=0, (2) is satisfied and therefore ,a10.a_1\neq0. Then (3) gives , taking r=0,1,2........in turn ,


a2=n(n+1)2a0a_2=\dfrac{-n(n+1)}{2}a_0 , a3=(n1)(n+2)3!a1, \ a_3=\dfrac{(n-1)(n+2)}{3!}a_1


a4=(n2)(n+3)4.3a2=n(n2)(n+1)(n+3)4!a0a_4=\dfrac{-(n-2)(n+3)}{4.3}a_2=\dfrac{n(n-2)(n+1)(n+3)}{4!}a_0


a5=(n3)(n+4)5.4a3=(n1)(n3)(n+2)(n+4)5!a1,etca_5=\dfrac{-(n-3)(n+4)}{5.4}a_3=\dfrac{(n-1)(n-3)(n+2)(n+4)}{5!}a_1, etc


Hence for m=0 , there are two independent solutions of (1),


y1=a0(1n(n+1)2!x2+(n2)n(n+1)(n+3)4!x4............4)y_1=a_0({1-\dfrac{n(n+1)}{2!}}x^{2}+\dfrac{(n-2)n(n+1)(n+3)}{4!}x^{4}-............4)



y2=a1(x(n1)(n+2)3!x3+(n3)(n1)(n+2)(n+4)5!x5.....)y_2=a_1(x-\dfrac{(n-1)(n+2)}{3!}x^{3}+\dfrac{(n-3)(n-1)(n+2)(n+4)}{5!}x^{5}-.....) ......................5)


When m=1 , (2) shows that a1=0.a_1=0. Therefore (3) gives ,


a3=a5=a7=0a_3=a_5=a_7=0


andand a2=(n1)(n+2)3!a0a_2=\dfrac{-(n-1)(n+2)}{3!}a_0



a4=(n3)(n1)(n+2)(n+4)5!a0,etca_4=\dfrac{(n-3)(n-1)(n+2)(n+4)}{5!}a_0, etc


Thus for m=1 , we get the solution of (5) again , Hence y=y1+y2y=y_1+y_2 is a general solution of (1).


So our general solution of given differential equation is y1+y2y_1+y_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS