Question #220156
find the characteristics of the equation pq=xy and determine the integral surface which passes through curve z=x, y=0
1
Expert's answer
2021-07-26T15:40:26-0400

Solving with method of characteristics :


f(x,y,z,p,q)=pqxy=0f(x, y, z, p, q)=pq-xy=0

fx=y,fy=x,fz=0,fp=q,fq=pf_x=-y, f_y=-x, f_z=0, f_p=q, f_q=p

dxfp=dyfq=dzpfp+qfq=dp(fx+pfz)=dq(fy+qfz)\dfrac{dx}{f_p}=\dfrac{dy}{f_q}=\dfrac{dz}{pf_p+qf_q}=\dfrac{dp}{-(f_x+pf_z)}=\dfrac{dq}{-(f_y+qf_z)}


dxq=dyp=dz2pq=dpy=dqx=dt\dfrac{dx}{q}=\dfrac{dy}{p}=\dfrac{dz}{2pq}=\dfrac{dp}{y}=\dfrac{dq}{x}=dt

Solve


dpdt=y,dydt=p\dfrac{dp}{dt}=y, \dfrac{dy}{dt}=p

d2pdt2=dydt\dfrac{d^2p}{dt^2}=\dfrac{dy}{dt}

d2pdt2=p\dfrac{d^2p}{dt^2}=p

p=Aet+Betp=Ae^{t}+Be^{-t}

y=dpdt=AetBety=\dfrac{dp}{dt}=Ae^{t}-Be^{-t}


q=Cet+Detq=Ce^{t}+De^{-t}

x=dqdt=CetDetx=\dfrac{dq}{dt}=Ce^{t}-De^{-t}

dzdt=2pq=2(Aet+Bet)(Cet+Det)\dfrac{dz}{dt}=2pq=2(Ae^{t}+Be^{-t})(Ce^{t}+De^{-t})

=2ACe2t+2BDe2t+2AD+2BC=2ACe^{2t}+2BDe^{-2t}+2AD+2BC

z=ACe2tBDe2t+2ADt+2BCt+Ez=ACe^{2t}-BDe^{-2t}+2ADt+2BCt+E


pqxy=0=>(Aet+Bet)(Cet+Det)pq-xy=0=>(Ae^{t}+Be^{-t})(Ce^{t}+De^{-t})

(AetBet)(CetDet)=0-(Ae^{t}-Be^{-t})(Ce^{t}-De^{-t})=0

=>AD+BC=0=>AD+BC=0

The initial data curve is written in parametric form as


x0(s)=s,y0(s)=0,z0(s)=sx_0(s)=s, y_0(s)=0, z_0(s)=s

Thus, using the initial data, the given PDE becomes


p0(s)q0(s)=0p_0(s)q_0(s)=0

The strip condition gives


1=p0(1)+q0(0)1=p_0(1)+q_0(0)

Therefore we have


x0=s,y0=0,z0=s,p0=1,q0=0x_0=s, y_0=0, z_0=s,p_0=1, q_0=0

Substitute


CD=sC-D=s

AB=0A-B=0

ACBD+E=sAC-BD+E=s

A+B=1A+B=1

C+D=0C+D=0

A=12,B=12,C=12s,D=12s,E=12sA=\dfrac{1}{2}, B=\dfrac{1}{2}, C=\dfrac{1}{2}s, D=-\dfrac{1}{2}s, E=\dfrac{1}{2}s

Characteristics:


x=et+et2sx=\dfrac{e^t+e^{-t}}{2}s

y=etet2y=\dfrac{e^t-e^{-t}}{2}

z=12(e2t+e2t2)s+12z=\dfrac{1}{2}(\dfrac{e^{2t}+e^{-2t}}{2})s+\dfrac{1}{2}


p=et+et2p=\dfrac{e^t+e^{-t}}{2}

q=etet2sq=\dfrac{e^t-e^{-t}}{2}s





x=scosht,y=sinhtx=s\text{cosh}t, y=\text{sinh}t

x2=s2cosh2t,1+y2=1+sinh2t=cosh2tx^2=s^2\text{cosh}^2t , 1+y^2=1+\text{sinh}^2t=\text{cosh}^2t

z=12s(cosh(2t)+1)=scosh2tz=\dfrac{1}{2}s(\text{cosh}(2t)+1)=s\text{cosh}^2t

z2=s2cosh4t=x2(1+y2)z^2=s^2\text{cosh}^4t=x^2(1+y^2)

Integral Surface: 


z2=x2(1+y2)z^2=x^2(1+y^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS