Solving with method of characteristics :
f(x,y,z,p,q)=pq−xy=0
fx=−y,fy=−x,fz=0,fp=q,fq=p
fpdx=fqdy=pfp+qfqdz=−(fx+pfz)dp=−(fy+qfz)dq
qdx=pdy=2pqdz=ydp=xdq=dt Solve
dtdp=y,dtdy=p
dt2d2p=dtdy
dt2d2p=p
p=Aet+Be−t
y=dtdp=Aet−Be−t
q=Cet+De−t
x=dtdq=Cet−De−t
dtdz=2pq=2(Aet+Be−t)(Cet+De−t)
=2ACe2t+2BDe−2t+2AD+2BC
z=ACe2t−BDe−2t+2ADt+2BCt+E
pq−xy=0=>(Aet+Be−t)(Cet+De−t)
−(Aet−Be−t)(Cet−De−t)=0
=>AD+BC=0
The initial data curve is written in parametric form as
x0(s)=s,y0(s)=0,z0(s)=s Thus, using the initial data, the given PDE becomes
p0(s)q0(s)=0 The strip condition gives
1=p0(1)+q0(0) Therefore we have
x0=s,y0=0,z0=s,p0=1,q0=0 Substitute
C−D=s
A−B=0
AC−BD+E=s
A+B=1
C+D=0
A=21,B=21,C=21s,D=−21s,E=21s Characteristics:
x=2et+e−ts
y=2et−e−t
z=21(2e2t+e−2t)s+21
p=2et+e−t
q=2et−e−ts
x=scosht,y=sinht
x2=s2cosh2t,1+y2=1+sinh2t=cosh2t
z=21s(cosh(2t)+1)=scosh2t
z2=s2cosh4t=x2(1+y2)
Integral Surface:
z2=x2(1+y2)
Comments