Question #218786

x²(y-z)p + y²(z − x)q = z²(x-y)


1
Expert's answer
2021-07-28T15:53:51-0400

Given the equation:


x2(yz)p+y2(zx)q=z2(xy)x^2(y-z)p + y^2(z − x)q = z^2(x-y)

The equation is a Lagrange Linear PDE and it's of the form:


Pp+Qq=RPp+Qq=R

with:


P=x2(yz);Q=y2(zx);R=z2(xy)P=x^2(y-z); \quad Q=y^2(z − x); \quad R=z^2(x-y)

The auxiliary equation is in the form:


dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}

Thus:


dxx2(yz)=dyy2(zx)=dzz2(xy)\frac{dx}{x^2(y-z)}=\frac{dy}{y^2(z − x)}=\frac{dz}{z^2(x-y)}

We proceed to solve the equation.


Using the multipliers 1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z}


dxxx(yz)=dyyy(zx)=dzzz(xy)\frac{\frac{dx}{x}}{x(y-z)}=\frac{\frac{dy}{y}}{y(z − x)}=\frac{\frac{dz}{z}}{z(x-y)}\\

Adding up we have:


dxx+dyy+dzz=0\frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}=0

Integrating through:


dxx+dyy+dzz=0lnx+lny+lnz=lncln(xyz)=lncc1=xyz\int\frac{dx}{x}+\int\frac{dy}{y}+\int\frac{dz}{z}=\int0\\ \ln x + \ln y+ \ln z=\ln c\\ \ln(xyz)=\ln c\\ \bold{c_1 = xyz}

Using the multipliers 1x2,1y2,1z2\frac{1}{x^2}, \frac{1}{y^2}, \frac{1}{z^2} as another triplet such that the denominator vanishes:

dxx2yz=dyy2zx=dzz2xy\frac{\frac{dx}{x^2}}{y-z}=\frac{\frac{dy}{y^2}}{z − x}=\frac{\frac{dz}{z^2}}{x-y}\\

Adding up, we get:


dxx2+dyy2+dzz2=0\frac{dx}{x^2}+\frac{dy}{y^2}+\frac{dz}{z^2}=0

Integrating through:


dxx2+dyy2+dzz2=01x1y1z=c2c2=(1x+1y+1z)\int\frac{dx}{x^2}+\int\frac{dy}{y^2}+\int\frac{dz}{z^2}=\int 0\\ -\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=c_2\\ \bold{c_2=-\Big(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Big)}

Therefore the solution of the PDE is:


ϕ(c1,c2)=(xyz,(1x+1y+1z))\phi(c_1,c_2) = \Big(xyz, -\Big(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Big)\Big)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS