dx2d2y+4y=4tan 2xy′′+4y=4tan 2xy′′+4y=0k2+4=0k1=2i, k2=−2iTherefore, an additional function is specifiedyc=C1cos2x+C2sin2xy=Acos2x+Bsin2xbe the complete solutionof the given equation whereA and B are to be foundWe have y1=cos2x, y2=sin2xy1′=−2sin2xy2′=2cos2xThen W=y1∗y2′−y2∗y1′==2cos2 2x+2sin2 2x=2A′=W−y2∗4tan 2xB′=Wy1∗4tan 2xA′=2−sin 2x∗4tan 2xB′=2−cos 2x∗4tan 2xA=∫cos2x−2sin2 2xdx B=∫2sin 2x dxA=−log(sec 2x+tan 2x)+sin 2x+C1B=−cos 2x+C2y=Acos2x+Bsin2xy=C1cos2x+C2sin2x−cos 2x∗log(sec 2x+tan 2x)answer:y=C1cos2x+C2sin2x−cos 2x∗log(sec 2x+tan 2x)
Comments