Let y′=z. Then
z′′−5z′+4z=8ex+4x The homogeneous equation is
z′′−5z′+4z=0
The characteristic equation is
r2−5r+4=0
r1=1,r2=4 The general solution of the homogeneous differential equation is
zh=C1ex+C2e4x Find the particular solution of the nonhomogeneous equation in form
zp=Axex+Bx+C Then
zp′=Aex+Axex+B
zp′′=2Aex+Axex Substitute
2Aex+Axex−5Aex−5Axex−5B
+4xAex+4Bx+4C=8ex+4x
xex:0=0
ex:−3A=8
x1:4B=4
x0:−5B+4C=0
zp=−38xex+x+45 The general solution of the differential equation
z′′−5z′+4z=8ex+4x is
z=C1ex+C2e4x−38xex+x+45 Integrate
y=∫(C1ex+C2e4x−38xex+x+45)dx
∫xexdx=xex−ex+C3
y=c1+c2ex+c3e4x−38xex+21x2+45x
Comments