Question #218230

Solve y"' -5y"+ 4y'=8ex + 4x.



1
Expert's answer
2021-07-19T05:46:22-0400

Let y=z.y'=z. Then


z5z+4z=8ex+4xz''-5z'+4z=8e^x+4x

The homogeneous equation is


z5z+4z=0z''-5z'+4z=0


The characteristic equation is


r25r+4=0r^2-5r+4=0

r1=1,r2=4r_1=1, r_2=4

The general solution of the homogeneous differential equation is


zh=C1ex+C2e4xz_h=C_1e^x+C_2e^{4x}

Find the particular solution of the nonhomogeneous equation in form


zp=Axex+Bx+Cz_p=Axe^x+Bx+C

Then


zp=Aex+Axex+Bz_p'=Ae^x+Axe^x+B

zp=2Aex+Axexz_p''=2Ae^x+Axe^x

Substitute


2Aex+Axex5Aex5Axex5B2Ae^x+Axe^x-5Ae^x-5Axe^x-5B

+4xAex+4Bx+4C=8ex+4x+4xAe^x+4Bx+4C=8e^x+4x


xex:0=0xe^x:0=0

ex:3A=8e^x:-3A=8

x1:4B=4x^1:4B=4

x0:5B+4C=0x^0:-5B+4C=0

zp=83xex+x+54z_p=-\dfrac{8}{3}xe^x+x+\dfrac{5}{4}

The general solution of the differential equation


z5z+4z=8ex+4xz''-5z'+4z=8e^x+4x

is


z=C1ex+C2e4x83xex+x+54z=C_1e^x+C_2e^{4x}-\dfrac{8}{3}xe^x+x+\dfrac{5}{4}

Integrate


y=(C1ex+C2e4x83xex+x+54)dxy=\int(C_1e^x+C_2e^{4x}-\dfrac{8}{3}xe^x+x+\dfrac{5}{4})dx

xexdx=xexex+C3\int xe^xdx=xe^x-e^x+C_3

y=c1+c2ex+c3e4x83xex+12x2+54xy=c_1+c_2e^x+c_3e^{4x}-\dfrac{8}{3}xe^x+\dfrac{1}{2}x^2+\dfrac{5}{4}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS