Question #218211

Find y as a function of t

 if 16y′′ + 136y′ +289y = 0,

y(0) = 7 , y′(0) = 3.



1
Expert's answer
2021-07-19T05:46:34-0400
16y+136y+289y=016y'' + 136y' +289y = 0

The characteristic equation


16r2+136r+289=016r^2+136r+289=0

(4r+17)2=0(4r+17)^2=0

r1,2=174r_{1,2}=-\dfrac{17}{4}

The general solution of the homogeneous equation is


y(t)=c1e(17/4)t+c2te(17/4)ty(t)=c_1e^{(-17/4)t}+c_2te^{(-17/4)t}

y(0)=7:c1e(17/4)(0)+c2(0)e(17/4)(0)=7y(0)=7:c_1e^{(-17/4)(0)}+c_2(0)e^{(-17/4)(0)}=7

c1=7c_1=7

y=7e(17/4)t+c2te(17/4)ty=7e^{(-17/4)t}+c_2te^{(-17/4)t}

y=1194e(17/4)t+c2e(17/4)t174c2te(17/4)ty'=-\dfrac{119}{4}e^{(-17/4)t}+c_2e^{(-17/4)t}-\dfrac{17}{4}c_2te^{(-17/4)t}

y(0)=3:1194+c20=3y'(0)=3:-\dfrac{119}{4}+c_2-0=3

c2=1314c_2=\dfrac{131}{4}

The solution of the given Initial Value Problem is


y(t)=7e(17/4)t+1314te(17/4)ty(t)=7e^{(-17/4)t}+\dfrac{131}{4}te^{(-17/4)t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS