16y′′+136y′+289y=0 The characteristic equation
16r2+136r+289=0
(4r+17)2=0
r1,2=−417 The general solution of the homogeneous equation is
y(t)=c1e(−17/4)t+c2te(−17/4)t
y(0)=7:c1e(−17/4)(0)+c2(0)e(−17/4)(0)=7
c1=7
y=7e(−17/4)t+c2te(−17/4)t
y′=−4119e(−17/4)t+c2e(−17/4)t−417c2te(−17/4)t
y′(0)=3:−4119+c2−0=3
c2=4131 The solution of the given Initial Value Problem is
y(t)=7e(−17/4)t+4131te(−17/4)t
Comments