Question #218210
  1. y(3x^3-x+y)dx+x^2(1-x^2)dy=0
  2. y(2x+y^2)dx+x(y^2-x)dy=0
1
Expert's answer
2021-07-20T17:45:08-0400

Answer:-

1.


y(3x3x+y)dx+x2(1x2)dy=0y(3x^3-x+y)dx+x^2(1-x^2)dy=0

This is the first order nonlinear ordinary differential equation.

Divide on x2(1x2)dx.x^2(1-x^2)dx.



y=3x3yxy+y2x2(x21),y'=\frac{3x^3y-xy+y^2}{x^2(x^2-1)},y=y2x2(x1)(x+1)+3xy(x1)(x+1)yx(x1)(x+1),y'=\frac{y^2}{x^2(x-1)(x+1)}+\frac{3xy}{(x-1)(x+1)}-\frac{y}{x(x-1)(x+1)},y3x21x3xy=y2x4x2.y'-\frac{3x^2-1}{x^3-x}y=\frac{y^2}{x^4-x^2}.

We have Bernuli's equation for n=2.

Divide by y2.y^2.



yy23x21(x3x)y=1x4x2.\frac{y'}{y^2}-\frac{3x^2-1}{(x^3-x)y}=\frac{1}{x^4-x^2}.

Replacement u=1y,u=\frac{1}{y}, then u=yy2,y=uy2.u'=-\frac{y'}{y^2}, y'=-u'y^2.



u(3x21)x3xu=1x4x2,-\frac{u(3x^2-1)}{x^3-x}-u'=\frac{1}{x^4-x^2},u+(3x(x1)(x+1)1x(x1)(x+1))u=1x4x2u'+(\frac{3x}{(x-1)(x+1)}-\frac{1}{x(x-1)(x+1)})u=-\frac{1}{x^4-x^2}

This is the first order linear equation.

Let be P(x)=3x(x1)(x+1)1x(x1)(x+1).P(x)=\frac{3x}{(x-1)(x+1)}-\frac{1}{x(x-1)(x+1)}.

P(x)dx=3x(x1)(x+1)1x(x1)(x+1)dx=ln(x3x)+C,\int P(x)dx=\int \frac{3x}{(x-1)(x+1)}-\frac{1}{x(x-1)(x+1)}dx=\ln (x^3-x)+C,

where C is some constant.

Solve


u+P(x)u=0,u'+P(x)u=0,duu=P(x)dx,\frac{du}{u}=-P(x)dx,duu=P(x)dx,\int\frac{du}{u}=-\int P(x)dx,lnu=ln(x3x)+C,\ln u =-\ln (x^3-x)+C,u=Cx3x.u=\frac{C}{x^3-x}.

The solution of u+(3x(x1)(x+1)1x(x1)(x+1))u=1x4x2u'+(\frac{3x}{(x-1)(x+1)}-\frac{1}{x(x-1)(x+1)})u=-\frac{1}{x^4-x^2} find by the method of variation constant in the form u=C(x)x3x.u=\frac{C(x)}{x^3-x}.



C(x)=(x3xx4x2)dx=lnx+C.C(x)=\int(-\frac{x^3-x}{x^4-x^2})dx=-\ln x+C.

Thus u=lnx+Cx3x.u=\frac{-\ln x+C}{x^3-x}.

From here y=xx3lnx+C.y=\frac{x-x^3}{\ln x+C}.

Answer. y=xx3lnx+C.y=\frac{x-x^3}{\ln x+C}.

2.



x(y2x)dy=y(y2+2x)dx=0.x(y^2-x)dy=y(y^2+2x)dx=0.

This is the first order nonlinear ordinary differential equation.

Replacement y=z,y=\sqrt{z}, then dy=dz2z.dy=\frac{dz}{2\sqrt{z}}. We will have



(cz2x32z)dz=(z322xz)dx.(\frac{c\sqrt{z}}{2}-\frac{x^3}{2\sqrt z})dz=(-z^{\frac{3}{2}}-2x\sqrt z)dx.

Replacement u=zx,u=\frac{z}{x}, then

x=ux,dz=udx+xdu.x=ux, dz=udx+xdu.

We will have



(u212ux3/2(udx+xdu)=(u3/22u)x3/2dx,(\frac{\sqrt {u}}{2}-\frac{1}{2\sqrt u}x^{3/2}(udx+xdu)=(-u^{3/2}-2\sqrt u)x^{3/2}dx,(ux5/22x5/22u)du=(3u3/2x3/223uu3/22)dx.(\frac{\sqrt {u}x^{5/2}}{2}-\frac{x^{5/2}}{2\sqrt u})du=(-\frac{3u^{3/2}x^{3/2}}{2}-\frac{3\sqrt u u^{3/2}}{2})dx.

Divide by x5/2x^{5/2} and 3u3/2x3/223uu3/22.-\frac{3u^{3/2}x^{3/2}}{2}-\frac{3\sqrt u u^{3/2}}{2}.

We will have



(13u(u+1)13(u+1))du=dxx.(\frac{1}{3u(u+1)}-\frac{1}{3(u+1)})du=\frac{dx}{x}.

(13u(u+1)13(u+1))du=dxx.\int(\frac{1}{3u(u+1)}-\frac{1}{3(u+1)})du=\int\frac{dx}{x}.

lnu32ln(u+1)3=lnx+C,\frac{\ln u}{3}-\frac{2\ln (u+1)}{3}=\ln x+C,

where C is some constant.

From here



u(u+1)2=Cx3.\frac{u}{(u+1)^2}=Cx^3.

Thus



z(z+x)2=Cx2.\frac{z}{(z+x)^2}=Cx^2.

So we have answer



y2=Cx2(y2+x)2.y^2=Cx^2(y^2+x)^2.

Answer. y2=Cx2(y2+x)2.y^2=Cx^2(y^2+x)^2.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS