( D 2 + 1 ) y = y ′ ′ + y = x 3 + e x cos x \left( {{D^2} + 1} \right)y = y'' + y = {x^3} + {e^x}\cos x ( D 2 + 1 ) y = y ′′ + y = x 3 + e x cos x
Сharacteristic equation:
k 2 + 1 = 0 {k^2} + 1 = 0 k 2 + 1 = 0
k 2 = − 1 {k^2} = - 1 k 2 = − 1
k = ± i k = \pm i k = ± i
Then the general solution of the homogeneous equation is
y 0 = C 1 cos x + C 2 sin x {y_0} = {C_1}\cos x + {C_2}\sin x y 0 = C 1 cos x + C 2 sin x
We will seek a particular solution in the form
y ~ = A x 3 + B x 2 + C x + D + e x ( E cos x + F sin x ) ⇒ \widetilde y = A{x^3} + B{x^2} + Cx + D + {e^x}\left( {E\cos x + F\sin x} \right) \Rightarrow y = A x 3 + B x 2 + C x + D + e x ( E cos x + F sin x ) ⇒
⇒ y ~ ′ = 3 A x 2 + 2 B x + C + e x ( E cos x + F sin x ) + e x ( − E sin x + F cos x ) ⇒ \Rightarrow {\widetilde y^\prime } = 3A{x^2} + 2Bx + C + {e^x}\left( {E\cos x + F\sin x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) \Rightarrow ⇒ y ′ = 3 A x 2 + 2 B x + C + e x ( E cos x + F sin x ) + e x ( − E sin x + F cos x ) ⇒
⇒ y ~ ′ ′ = 6 A x + 2 B + e x ( E cos x + F sin x ) + e x ( − E sin x + F cos x ) + e x ( − E sin x + F cos x ) + e x ( − E cos x − F sin x ) \Rightarrow {\widetilde y^{\prime \prime }} = 6Ax + 2B + {e^x}\left( {E\cos x + F\sin x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\cos x - F\sin x} \right) ⇒ y ′′ = 6 A x + 2 B + e x ( E cos x + F sin x ) + e x ( − E sin x + F cos x ) + e x ( − E sin x + F cos x ) + e x ( − E cos x − F sin x )
Substitute the obtained values into the original equation:
6 A x + 2 B + e x ( E cos x + F sin x ) + e x ( − E sin x + F cos x ) + e x ( − E sin x + F cos x ) + e x ( − E cos x − F sin x ) + A x 3 + B x 2 + C x + D + e x ( E cos x + F sin x ) = x 3 + e x cos x 6Ax + 2B + {e^x}\left( {E\cos x + F\sin x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\cos x - F\sin x} \right) + A{x^3} + B{x^2} + Cx + D + {e^x}\left( {E\cos x + F\sin x} \right) = {x^3} + {e^x}\cos x 6 A x + 2 B + e x ( E cos x + F sin x ) + e x ( − E sin x + F cos x ) + e x ( − E sin x + F cos x ) + e x ( − E cos x − F sin x ) + A x 3 + B x 2 + C x + D + e x ( E cos x + F sin x ) = x 3 + e x cos x
A x 3 + B x 2 + x ( 6 A + C ) + D + 2 B + e x cos x ( E + F + F − E + E ) + e x sin x ( F − E − E − F + F ) = x 3 + e x cos x A{x^3} + B{x^2} + x\left( {6A + C} \right) + D + 2B + {e^x}\cos x(E + F + F - E + E) + {e^x}\sin x(F - E - E - F + F) = {x^3} + {e^x}\cos x A x 3 + B x 2 + x ( 6 A + C ) + D + 2 B + e x cos x ( E + F + F − E + E ) + e x sin x ( F − E − E − F + F ) = x 3 + e x cos x
{ A = 1 B = 0 6 A + C = 0 D + 2 B = 0 2 F + E = 1 − 2 E + F = 0 ⇒ A = 1 , B = 0 , C = − 6 , D = 0 , F = 2 5 , E = 1 5 \left\{ \begin{matrix}
A = 1\\
B = 0\\
6A + C = 0\\
D + 2B = 0\\
2F + E = 1\\
- 2E + F = 0
\end{matrix} \right. \Rightarrow A = 1,\,B = 0,\,C = - 6,\,D = 0,\,F = \frac{2}{5},\,E = \frac{1}{5} ⎩ ⎨ ⎧ A = 1 B = 0 6 A + C = 0 D + 2 B = 0 2 F + E = 1 − 2 E + F = 0 ⇒ A = 1 , B = 0 , C = − 6 , D = 0 , F = 5 2 , E = 5 1
So,
y ~ = x 3 − 6 x + e x ( 1 5 cos x + 2 5 sin x ) \widetilde y = {x^3} - 6x + {e^x}\left( {\frac{1}{5}\cos x + \frac{2}{5}\sin x} \right) y = x 3 − 6 x + e x ( 5 1 cos x + 5 2 sin x )
y = y 0 + y ~ = C 1 cos x + C 2 sin x + x 3 − 6 x + e x ( 1 5 cos x + 2 5 sin x ) y = {y_0} + \widetilde y = {C_1}\cos x + {C_2}\sin x + {x^3} - 6x + {e^x}\left( {\frac{1}{5}\cos x + \frac{2}{5}\sin x} \right) y = y 0 + y = C 1 cos x + C 2 sin x + x 3 − 6 x + e x ( 5 1 cos x + 5 2 sin x )
Answer: y = C 1 cos x + C 2 sin x + x 3 − 6 x + e x ( 1 5 cos x + 2 5 sin x ) y = {C_1}\cos x + {C_2}\sin x + {x^3} - 6x + {e^x}\left( {\frac{1}{5}\cos x + \frac{2}{5}\sin x} \right) y = C 1 cos x + C 2 sin x + x 3 − 6 x + e x ( 5 1 cos x + 5 2 sin x )
Comments