Question #218070

Find the general solution and the second solution of,

x2y"-3xy'+4y=0,given y1(x)=x2

1
Expert's answer
2021-07-19T17:31:02-0400

Answer:-

Given that y1(x)=x2y_1(x)=x^2  is one solution.

    y1=2x    y1=2\implies y'_1=2x\\ \implies y''_1=2

Given D.E x2y"3xy+4y=0x^2y"-3xy'+4y=0

Now  x2y13xy1+4y1=x2(2)3x(2x)+4x2=0x^2y_1''-3xy'_1+4y_1=x^2(2)-3x(2x)+4x^2=0

That is. y1(x)y_1(x) satisfies the given DE

So y1(x)y_1(x) s a solution of the D.E.


Let the second solution be y2(x)=u(x)x2y_2(x)=u(x)x^2

    y2=ux2+2ux    y2=ux2+2ux+2[ux+u]\implies y_2'=u'x^2+2ux\\\implies y''_2=u''x^2+2u'x+2[u'x+u]

or y2=ux2+4ux+2uy_2''=u''x^2+4u'x+2u


Substitute these into the differential equation to get

x2(ux2+4ux+2u)3x(ux2+2ux)+4ux2=0x^2(u''x^2+4u'x+2u)-3x(u'x^2+2ux)+4ux^2=0

    ux4+ux3=0    ux+u=0             (x>0)    uu=1x\implies u''x^4+u'x^3=0\\ \implies u''x+u'=0\ \ \ \ \ \ \ \ \ \ \ \ \ (\because x >0) \\ \implies \frac{u''}{u'}=-\frac{1}{x}

on integrating we get

lnu=lnx+c        =ln(1x)+clnu'=-lnx+c\\ \ \ \ \ \ \ \ \ =ln(\frac{1}{x})+c


By taking c=0 we get

lnu=ln(1x)    u=1x    u=lnxlnu' =ln(\frac{1}{x})\\ \implies u'=\frac{1}{x}\\ \implies u=lnx


So second solution y2(x)=(lnx)x2y_2(x)=(lnx)x^2

W(x)=x2x2lnx2x2xlnx+xW(x)=\begin{vmatrix} x^2 & x^2lnx\\ 2x & 2xlnx+x \end{vmatrix}

Now wronskian 

=2x3lnx+x32x3=2x^3lnx+x^3-2x^3

=x3    W(x)0      (x>0)=x^3 \\\implies \boxed{W(x)\ne0} \ \ \ \ \ \ (\because x >0)

Hence y1(x)andY2(x)y_1(x) and Y_2(x) form a fundamental set of solutions.

So general solution is given by

y=c1x2+c2x2lnx\boxed{y=c_1x^2+c_2x^2lnx}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS