Answer:-
Given that y 1 ( x ) = x 2 y_1(x)=x^2 y 1 ( x ) = x 2 is one solution.
⟹ y 1 ′ = 2 x ⟹ y 1 ′ ′ = 2 \implies y'_1=2x\\
\implies y''_1=2 ⟹ y 1 ′ = 2 x ⟹ y 1 ′′ = 2
Given D.E x 2 y " − 3 x y ′ + 4 y = 0 x^2y"-3xy'+4y=0 x 2 y " − 3 x y ′ + 4 y = 0
Now x 2 y 1 ′ ′ − 3 x y 1 ′ + 4 y 1 = x 2 ( 2 ) − 3 x ( 2 x ) + 4 x 2 = 0 x^2y_1''-3xy'_1+4y_1=x^2(2)-3x(2x)+4x^2=0 x 2 y 1 ′′ − 3 x y 1 ′ + 4 y 1 = x 2 ( 2 ) − 3 x ( 2 x ) + 4 x 2 = 0
That is. y 1 ( x ) y_1(x) y 1 ( x ) satisfies the given DE
So y 1 ( x ) y_1(x) y 1 ( x ) s a solution of the D.E.
Let the second solution be y 2 ( x ) = u ( x ) x 2 y_2(x)=u(x)x^2 y 2 ( x ) = u ( x ) x 2
⟹ y 2 ′ = u ′ x 2 + 2 u x ⟹ y 2 ′ ′ = u ′ ′ x 2 + 2 u ′ x + 2 [ u ′ x + u ] \implies y_2'=u'x^2+2ux\\\implies y''_2=u''x^2+2u'x+2[u'x+u] ⟹ y 2 ′ = u ′ x 2 + 2 ux ⟹ y 2 ′′ = u ′′ x 2 + 2 u ′ x + 2 [ u ′ x + u ]
or y 2 ′ ′ = u ′ ′ x 2 + 4 u ′ x + 2 u y_2''=u''x^2+4u'x+2u y 2 ′′ = u ′′ x 2 + 4 u ′ x + 2 u
Substitute these into the differential equation to get
x 2 ( u ′ ′ x 2 + 4 u ′ x + 2 u ) − 3 x ( u ′ x 2 + 2 u x ) + 4 u x 2 = 0 x^2(u''x^2+4u'x+2u)-3x(u'x^2+2ux)+4ux^2=0 x 2 ( u ′′ x 2 + 4 u ′ x + 2 u ) − 3 x ( u ′ x 2 + 2 ux ) + 4 u x 2 = 0
⟹ u ′ ′ x 4 + u ′ x 3 = 0 ⟹ u ′ ′ x + u ′ = 0 ( ∵ x > 0 ) ⟹ u ′ ′ u ′ = − 1 x \implies u''x^4+u'x^3=0\\
\implies u''x+u'=0\ \ \ \ \ \ \ \ \ \ \ \ \ (\because x >0) \\
\implies \frac{u''}{u'}=-\frac{1}{x} ⟹ u ′′ x 4 + u ′ x 3 = 0 ⟹ u ′′ x + u ′ = 0 ( ∵ x > 0 ) ⟹ u ′ u ′′ = − x 1
on integrating we get
l n u ′ = − l n x + c = l n ( 1 x ) + c lnu'=-lnx+c\\
\ \ \ \ \ \ \ \ =ln(\frac{1}{x})+c l n u ′ = − l n x + c = l n ( x 1 ) + c
By taking c=0 we get
l n u ′ = l n ( 1 x ) ⟹ u ′ = 1 x ⟹ u = l n x lnu' =ln(\frac{1}{x})\\
\implies u'=\frac{1}{x}\\
\implies u=lnx l n u ′ = l n ( x 1 ) ⟹ u ′ = x 1 ⟹ u = l n x
So second solution y 2 ( x ) = ( l n x ) x 2 y_2(x)=(lnx)x^2 y 2 ( x ) = ( l n x ) x 2
W ( x ) = ∣ x 2 x 2 l n x 2 x 2 x l n x + x ∣ W(x)=\begin{vmatrix}
x^2 & x^2lnx\\
2x & 2xlnx+x
\end{vmatrix} W ( x ) = ∣ ∣ x 2 2 x x 2 l n x 2 x l n x + x ∣ ∣
Now wronskian
= 2 x 3 l n x + x 3 − 2 x 3 =2x^3lnx+x^3-2x^3 = 2 x 3 l n x + x 3 − 2 x 3
= x 3 ⟹ W ( x ) ≠ 0 ( ∵ x > 0 ) =x^3
\\\implies \boxed{W(x)\ne0} \ \ \ \ \ \ (\because x >0) = x 3 ⟹ W ( x ) = 0 ( ∵ x > 0 )
Hence y 1 ( x ) a n d Y 2 ( x ) y_1(x) and Y_2(x) y 1 ( x ) an d Y 2 ( x ) form a fundamental set of solutions.
So general solution is given by
y = c 1 x 2 + c 2 x 2 l n x \boxed{y=c_1x^2+c_2x^2lnx} y = c 1 x 2 + c 2 x 2 l n x
Comments