Answer:-
Given that y1(x)=x2 is one solution.
⟹y1′=2x⟹y1′′=2
Given D.E x2y"−3xy′+4y=0
Now x2y1′′−3xy1′+4y1=x2(2)−3x(2x)+4x2=0
That is. y1(x) satisfies the given DE
So y1(x) s a solution of the D.E.
Let the second solution be y2(x)=u(x)x2
⟹y2′=u′x2+2ux⟹y2′′=u′′x2+2u′x+2[u′x+u]
or y2′′=u′′x2+4u′x+2u
Substitute these into the differential equation to get
x2(u′′x2+4u′x+2u)−3x(u′x2+2ux)+4ux2=0
⟹u′′x4+u′x3=0⟹u′′x+u′=0 (∵x>0)⟹u′u′′=−x1
on integrating we get
lnu′=−lnx+c =ln(x1)+c
By taking c=0 we get
lnu′=ln(x1)⟹u′=x1⟹u=lnx
So second solution y2(x)=(lnx)x2
W(x)=∣∣x22xx2lnx2xlnx+x∣∣
Now wronskian
=2x3lnx+x3−2x3
=x3⟹W(x)=0 (∵x>0)
Hence y1(x)andY2(x) form a fundamental set of solutions.
So general solution is given by
y=c1x2+c2x2lnx
Comments