Let us solve the following differential equation dxdy+3y=3x2e−x. For this let us multply both parts by e3x: e3xdxdy+3e3xy=3x2e−xe3x. It follows that (e3xy)′=3x2e2x. Then e3xy=3∫x2e2xdx=∣u=x2,dv=e2xdx,du=2xdx,v=21e2x∣=23x2e2x−3∫xe2xdx=∣u=x,dv=e2x,du=dx,v=21e2x∣=23x2e2x−23xe2x+23∫e2xdx=23x2e2x−23xe2x+43e2x+C.
It follows that the general solution is y=e−3x(23x2e2x−23xe2x+43e2x+C)=23x2e−x−23xe−x+43e−x+Ce−3x.
Comments