Question #218040

solve the following question

  1. dy/dx+3y=3x2e-x
1
Expert's answer
2021-07-19T10:34:06-0400

Let us solve the following differential equation dydx+3y=3x2ex.\frac{dy}{dx}+3y=3x^2e^{-x}. For this let us multply both parts by e3x:e^{3x}: e3xdydx+3e3xy=3x2exe3x.e^{3x}\frac{dy}{dx}+3e^{3x}y=3x^2e^{-x}e^{3x}. It follows that (e3xy)=3x2e2x.(e^{3x}y)'=3x^2e^{2x}. Then e3xy=3x2e2xdx=u=x2,dv=e2xdx,du=2xdx,v=12e2x=32x2e2x3xe2xdx=u=x,dv=e2x,du=dx,v=12e2x=32x2e2x32xe2x+32e2xdx=32x2e2x32xe2x+34e2x+C.e^{3x}y=3\int x^2e^{2x}dx=|u=x^2,dv=e^{2x}dx,du=2xdx, v=\frac{1}{2}e^{2x}|=\frac{3}{2}x^2e^{2x}-3\int xe^{2x}dx=|u=x,dv=e^{2x},du=dx,v=\frac{1}{2}e^{2x}|=\frac{3}{2}x^2e^{2x}-\frac{3}{2}xe^{2x}+\frac{3}{2}\int e^{2x}dx=\frac{3}{2}x^2e^{2x}-\frac{3}{2}xe^{2x}+\frac{3}{4}e^{2x}+C.

It follows that the general solution is y=e3x(32x2e2x32xe2x+34e2x+C)=32x2ex32xex+34ex+Ce3x.y=e^{-3x}(\frac{3}{2}x^2e^{2x}-\frac{3}{2}xe^{2x}+\frac{3}{4}e^{2x}+C)=\frac{3}{2}x^2e^{-x}-\frac{3}{2}xe^{-x}+\frac{3}{4}e^{-x}+Ce^{-3x} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS