Question #217976

Solve the following differential equation subject to the given initial conditions. 1. dy/dtheta=ysin(theta); y(pi)=3. 2. x^2 dy/dx=y-xy; y(1)=1


1
Expert's answer
2021-07-19T07:43:06-0400

Solution.

1.


dydθ=ysinθ,y(π)=3\frac{dy}{d\theta}=y\sin{\theta}, y(π)=3dyy=sinθdθ,\frac{dy}{y}=\sin{\theta}d\theta,dyy=sinθdθ,\int\frac{dy}{y}=\int\sin{\theta}d\theta,lny=cosθ+C,\ln |y|=-\cos{\theta}+C,

where C is some constant.

If y(π)=3,y(π)=3, then ln3=cosπ+C.\ln 3=-\cos{π}+C.

From here

C=ln31.C=\ln 3-1.

We will have

lny=cosθ+ln31,\ln y=-\cos{\theta}+\ln 3-1, orlny=lnecosθ+ln3lne.\ln y=\ln e^{-\cos{\theta}}+\ln 3-\ln e.

Answer.


y=3ecosθey=\frac{3e^{-\cos{\theta}}}{e}

2.


x2dydx=yxy,y(1)=1x^2\frac{dy}{dx}=y-xy, y(1)=1dyy=1xx2dx,\frac{dy}{y}=\frac{1-x}{x^2}dx,dyy=1xx2dx,\int\frac{dy}{y}=\int\frac{1-x}{x^2}dx,dyy=1x2dxdxx,\int\frac{dy}{y}=\int\frac{1}{x^2}dx-\int\frac{dx}{x},lny=1xlnx+C,\ln y=-\frac{1}{x}-\ln x+C,

where C is some constant.

If y(1)=1,y(1)=1, then ln1=1ln1+C.\ln 1=-1-\ln1+C.

From here C=1.

We will have

lny=lne1xlnx+lne,\ln y=\ln e^{-\frac{1}{x}}-\ln x+\ln e, ory=e11xx.y=\frac{e^{1-\frac{1}{x}}}{x}.

Answer.

y=e11xx.y=\frac{e^{1-\frac{1}{x}}}{x}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS