Solution.
1.
dθdy=ysinθ,y(π)=3ydy=sinθdθ,∫ydy=∫sinθdθ,ln∣y∣=−cosθ+C, where C is some constant.
If y(π)=3, then ln3=−cosπ+C.
From here
C=ln3−1.
We will have
lny=−cosθ+ln3−1, orlny=lne−cosθ+ln3−lne.
Answer.
y=e3e−cosθ 2.
x2dxdy=y−xy,y(1)=1ydy=x21−xdx,∫ydy=∫x21−xdx,∫ydy=∫x21dx−∫xdx,lny=−x1−lnx+C, where C is some constant.
If y(1)=1, then ln1=−1−ln1+C.
From here C=1.
We will have
lny=lne−x1−lnx+lne, ory=xe1−x1.
Answer.
y=xe1−x1.
Comments