∑k=17yk=95
∑k=17ykcos(xk)=−4.5
∑k=17yksin(xk)=−0.866
∑k=17ykcoc(2xk)=12.5
∑k=17yksin(2xk)=2.598
we can get the values of ai and bi as follows:
a0=71×95=13.57
a1=72×(−4.5)=−1.29
a2=72×12.5=3.57
b1=72×(−0.866)=−0.25
b2=72×2.598=0.74
Substituting those values into Fourier series
f(x)=a0+∑n=1∞(ancos(nx)+bnsin(nx)) gives
f(x)=a0+a1cos(x)+a2cos(2x)+b1sin(x)+b2sin(2x)
∴y=13.57−1.29cos(x)+3.75cos(2x)−0.25sin(x)+0.74sin(2x)
Comments