Solution;
The equation is Ricatti of the form;
y'=A(x)y2+B(x)y+C(x)
From our equation,
A(x)=2cos(x)1
B(x)=0
C(x)=2cos(x)2cos2(x)−sin2(x)
Given y1(x)=sin (x)
To find the general solution,
Let y=y1+v1
Where v is another function of x.
y=sin(x)+v1
y'=cos(x)-v21dxdv
We can now equate the equations,
dxdy =cos(x)-v21dxdv =2cos(x)2cos2(x)−sin2(x)+(sin(x)+v1)2
By simplication;
cos(x)-v21dxdv =2cos(x)2cos2(x)+2cos(x)v2sin(x)+v21
Further simplification;
−v21dxdv=2cos(x)v2sin(x)+v21
Multiply -v2
dxdv =2cos(x)−(2vsin(x)+1)=−vtan(x) -0.5sec(x)
Which be rewritten as;
dxdv +vtan (x)=-0.5sec(x)
Introduce the integrating factor,I.F
I.F=e∫tan(x)dx =sec(x)
Multiply all through with I.F;
sec(x)dxdv +vsec(x)tan(x)=-0.5sec2(x)
Dx(vsec(x)=-0.5sec2(x)dx
Integrate both sides;
vsec(x)=-0.5tan(x)+C
Multiply both sides with cos(x);
V=-0.5sin(x)+Ccos(x)
y=sin(x)+v1
y=sin(x)+Ccos(x)−0.5sin(x)1
Using the given intial condition,find the value of C;
y(0)=-1
-1=sin(0)+Ccos(0)−0.5sin(0)1
-1=C1
C=-1
Therefore,the general solution of the equation is ;
y=sin(x)-cos(x)+0.5sin(x)1
This can be written as;
y=sin(x)-2cos(x)+sin(x)2
Comments