Question #217658

y'=(2cos^2(x)-sin^2(x)+y^2)/2cos(x), y(0)=-1, y(1)=sin(x)


1
Expert's answer
2021-07-16T15:46:54-0400

Solution;

The equation is Ricatti of the form;

y'=A(x)y2+B(x)y+C(x)

From our equation,

A(x)=12cos(x)\frac{1}{2cos(x)}

B(x)=0

C(x)=2cos2(x)sin2(x)2cos(x)\frac{2cos^2(x)-sin^2(x)}{2cos(x)}

Given y1(x)=sin (x)

To find the general solution,

Let y=y1+1v\frac 1 v

Where v is another function of x.

y=sin(x)+1v\frac 1v

y'=cos(x)-1v2\frac {1}{v^2}dvdx\frac{dv}{dx}

We can now equate the equations,

dydx\frac{dy}{dx} =cos(x)-1v2dvdx\frac{1}{v^2}\frac{dv}{dx} =2cos2(x)sin2(x)+(sin(x)+1v)22cos(x)\frac{2cos^2(x)-sin^2(x)+(sin(x)+\frac 1v)^2}{2cos(x)}

By simplication;

cos(x)-1v2dvdx\frac{1}{v^2}\frac{dv}{dx} =2cos2(x)2cos(x)+2sin(x)v+1v22cos(x)\frac{2cos^2(x)}{2cos(x)}+\frac{\frac{2sin(x)}{v}+\frac{1}{v^2}}{2cos(x)}

Further simplification;

1v2dvdx=2sin(x)v+1v22cos(x)-\frac{1}{v^2}\frac{dv}{dx}=\frac{\frac{2sin(x)}{v}+\frac{1}{v^2}}{2cos(x)}

Multiply -v2

dvdx\frac{dv}{dx} =(2vsin(x)+1)2cos(x)=vtan(x)\frac{-(2vsin(x)+1)}{2cos(x)}=-vtan(x) -0.5sec(x)

Which be rewritten as;

dvdx\frac{dv}{dx} +vtan (x)=-0.5sec(x)

Introduce the integrating factor,I.F

I.F=etan(x)dxe^{\int{tan(x)dx}} =sec(x)

Multiply all through with I.F;

sec(x)dvdx\frac{dv}{dx} +vsec(x)tan(x)=-0.5sec2(x)

Dx(vsec(x)=-0.5sec2(x)dx

Integrate both sides;

vsec(x)=-0.5tan(x)+C

Multiply both sides with cos(x);

V=-0.5sin(x)+Ccos(x)

y=sin(x)+1v\frac 1v

y=sin(x)+1Ccos(x)0.5sin(x)\frac{1}{Ccos(x)-0.5sin(x)}

Using the given intial condition,find the value of C;

y(0)=-1

-1=sin(0)+1Ccos(0)0.5sin(0)\frac{1}{Ccos(0)-0.5sin(0)}

-1=1C\frac1C

C=-1

Therefore,the general solution of the equation is ;

y=sin(x)-1cos(x)+0.5sin(x)\frac{1}{cos(x)+0.5sin(x)}

This can be written as;

y=sin(x)-22cos(x)+sin(x)\frac{2}{2cos(x)+sin(x)}








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS