2021-07-15T20:12:54-04:00
d^2q/dt^2+16dq/dt=60
In an L-C circuit, L = 1 henry, C = 1
16 farad and E(t) = 60 volt.
Solce using laplace
dt dt represents the capacitor charge at anytime t.
Given q(0)= 0and q' ( 0)=i(0)=0 find:
7.1 the charge q on the capacitor at anytime t. (7)
7.2 the current i at anytime t.
1
2021-07-18T16:09:03-0400
s 2 Y ( s ) + 16 s Y ( s ) = 60 s s^2Y(s)+16sY(s)=\dfrac{60}{s} s 2 Y ( s ) + 16 s Y ( s ) = s 60
Y ( s ) = 60 s 2 ( s + 16 ) Y(s)=\dfrac{60}{s^2(s+16)} Y ( s ) = s 2 ( s + 16 ) 60
60 s 2 ( s + 16 ) = A s + 16 + B s + C s 2 \dfrac{60}{s^2(s+16)}=\dfrac{A}{s+16}+\dfrac{B}{s}+\dfrac{C}{s^2} s 2 ( s + 16 ) 60 = s + 16 A + s B + s 2 C
= A s 2 + B s ( s + 16 ) + C ( s + 16 ) s 2 ( s + 16 ) =\dfrac{As^2+Bs(s+16)+C(s+16)}{s^2(s+16)} = s 2 ( s + 16 ) A s 2 + B s ( s + 16 ) + C ( s + 16 )
s = 0 : C = 15 4 s=0:C=\dfrac{15}{4} s = 0 : C = 4 15
s = − 16 : A = 15 64 s=-16:A=\dfrac{15}{64} s = − 16 : A = 64 15
B = − A = − 15 64 B=-A=-\dfrac{15}{64} B = − A = − 64 15 7.1
q ( t ) = 15 4 t − 15 64 + 15 e − 16 t 64 q(t)=\dfrac{15}{4}t-\dfrac{15}{64}+\dfrac{15e^{-16t}}{64} q ( t ) = 4 15 t − 64 15 + 64 15 e − 16 t
7.2
i ( t ) = 15 4 − 15 e − 16 t 4 i(t)=\dfrac{15}{4}-\dfrac{15e^{-16t}}{4} i ( t ) = 4 15 − 4 15 e − 16 t
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments