Question1
1) 501q′′+q′+8q=50cos30t
q′′+50q′+400q=2500cos30t
characteristic equation:
k2+50k+400=0
D=2500−1600=900
k1=2−50−30=−40
k2=2−50+30=−10
Then the general solution of the homogeneous equation is
q0=C1e−40t+C2e−10t
We will seek a particular solution in the form
q=Acos30t+Bsin30t⇒q′=−30Asin30t+30Bcos30t⇒q′′==−900Acos30t−900Bsin30t
Substitute the obtained values into the original equation:
−900Acos30t−900Bsin30t−1500Asin30t+1500Bcos30t+400Acos30t+400Bsin30t=2500cos30t
(−900A+1500B+400A)cos30t+(−900B−1500A+400B)sin30t=2500cos30t
{−500A+1500B=2500−1500A−500B=0⇒
⇒{A=−21B=23
So,
q=−21cos30t+23sin30t
q(t)=q0+q=C1e−40t+C2e−10t−21cos30t+23sin30t
Answer: q(t)=C1e−40t+C2e−10t−21cos30t+23sin30t
2)
I(t)=dtdq=(C1e−40t+C2e−10t−21cos30t+23sin30t)′==−40C1e−40t−10C2e−10t+15sin30t+45cos30t
Answer: I(t)=−40C1e−40t−10C2e−10t+15sin30t+45cos30t
3) The steady state solution is q=−21cos30t+23sin30t=25sin(30t−arctan31)
So, the amplitude is A=25 , the frequency is f=2π30
Answer: A=25 , f=2π30
Question 2
y′′+2y′+5y=34sinxcosx
y′′+2y′+5y=17sin2x
characteristic equation:
k2+2k+5=0
D=4−20=−16
k1=2−2−4i=−1−2i
k2=2−2+4i=−1+2i
Then the general solution of the homogeneous equation is
y0=e−x(C1cos2x+C2sin2x)
We will seek a particular solution in the form
y=Asin2x+Bcos2x⇒y′=2Acos2x−2Bsin2x⇒y′′=−4Asin2x−4Bcos2x
Substitute the obtained values into the original equation:
−4Asin2x−4Bcos2x+4Acos2x−4Bsin2x+5Asin2x+5Bcos2x=17sin2x
(A−4B)sin2x+(4A+B)cos2x=17sin2x
{A−4B=174A+B=0⇒A=1,B=−4
So,
y=sin2x−4cos2x
y=y0+y=e−x(C1cos2x+C2sin2x)+sin2x−4cos2x
Answer: y=e−x(C1cos2x+C2sin2x)+sin2x−4cos2x
Comments
In question1 How to get D =2500−1600=900? can you explain in detail