Question #217227

Question1

The conditions in a certain electrical circuit is represented by the following differential equation:

1/50Q’’ +Q’ +8q =50 Cos30t

1.      Determine an expression for q in term of t

2.      Determine an expression for the current  I        (hint I =dq/dt)

3.      Determine the amplitude and the frequency of the steady state current.

 

Question2

Find the general solution of the following DE using the method of undetermined coefficients :

Y’’ +2y’+5y = 34sinxcosx  


1
Expert's answer
2021-07-15T09:36:51-0400

Question1

1) 150q+q+8q=50cos30t\frac{1}{{50}}q'' + q' + 8q = 50\cos 30t

q+50q+400q=2500cos30tq'' + 50q' + 400q = 2500\cos 30t

characteristic equation:

k2+50k+400=0{k^2} + 50k + 400 = 0

D=25001600=900D = 2500 - 1600 = 900

k1=50302=40{k_1} = \frac{{ - 50 - 30}}{2} = - 40

k2=50+302=10{k_2} = \frac{{ - 50 + 30}}{2} = - 10

Then the general solution of the homogeneous equation is

q0=C1e40t+C2e10t{q_0} = {C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}}

We will seek a particular solution in the form

q~=Acos30t+Bsin30tq~=30Asin30t+30Bcos30tq~==900Acos30t900Bsin30t\widetilde q = A\cos 30t + B\sin 30t \Rightarrow {\widetilde q^\prime } = - 30A\sin 30t + 30B\cos 30t \Rightarrow {\widetilde q^{\prime \prime }} = \\=- 900A\cos 30t - 900B\sin 30t

Substitute the obtained values ​​into the original equation:

900Acos30t900Bsin30t1500Asin30t+1500Bcos30t+400Acos30t+400Bsin30t=2500cos30t- 900A\cos 30t - 900B\sin 30t - 1500A\sin 30t + 1500B\cos 30t + 400A\cos 30t + 400B\sin 30t = 2500\cos 30t

(900A+1500B+400A)cos30t+(900B1500A+400B)sin30t=2500cos30t( - 900A + 1500B + 400A)\cos 30t + ( - 900B - 1500A + 400B)\sin 30t = 2500\cos 30t

{500A+1500B=25001500A500B=0\left\{ \begin{array}{l} - 500A + 1500B = 2500\\ - 1500A - 500B = 0 \end{array} \right. \Rightarrow

{A=12B=32\Rightarrow \left\{ {\begin{matrix} {A = - \frac{1}{2}}\\ {B = \frac{3}{2}} \end{matrix}} \right.

So,

q~=12cos30t+32sin30t\widetilde q = - \frac{1}{2}\cos 30t + \frac{3}{2}\sin 30t

q(t)=q0+q~=C1e40t+C2e10t12cos30t+32sin30tq(t) = {q_0} + \widetilde q = {C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}} - \frac{1}{2}\cos 30t + \frac{3}{2}\sin 30t

Answer: q(t)=C1e40t+C2e10t12cos30t+32sin30tq(t) = {C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}} - \frac{1}{2}\cos 30t + \frac{3}{2}\sin 30t

2)

I(t)=dqdt=(C1e40t+C2e10t12cos30t+32sin30t)==40C1e40t10C2e10t+15sin30t+45cos30tI(t) = \frac{{dq}}{{dt}} = {\left( {{C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}} - \frac{1}{2}\cos 30t + \frac{3}{2}\sin 30t} \right)^\prime } =\\= - 40{C_1}{e^{ - 40t}} - 10{C_2}{e^{ - 10t}} + 15\sin 30t + 45\cos 30t

Answer: I(t)=40C1e40t10C2e10t+15sin30t+45cos30tI(t) = - 40{C_1}{e^{ - 40t}} - 10{C_2}{e^{ - 10t}} + 15\sin 30t + 45\cos 30t

3) The steady state solution is q~=12cos30t+32sin30t=52sin(30tarctan13)\widetilde q = - \frac{1}{2}\cos 30t + \frac{3}{2}\sin 30t = \sqrt {\frac{5}{2}} \sin \left( {30t - arctan\frac{1}{3}} \right)

So, the amplitude is A=52A = \sqrt {\frac{5}{2}} , the frequency is f=302πf =\frac{ 30}{2\pi}

Answer: A=52A = \sqrt {\frac{5}{2}} , f=302πf = \frac{30}{2 \pi}

Question 2

y+2y+5y=34sinxcosxy'' + 2y' + 5y = 34\sin x\cos x

y+2y+5y=17sin2xy'' + 2y' + 5y = 17\sin 2x

characteristic equation:

k2+2k+5=0{k^2} + 2k + 5 = 0

D=420=16D = 4 - 20 = - 16

k1=24i2=12i{k_1} = \frac{{ - 2 - 4i}}{2} = - 1 - 2i

k2=2+4i2=1+2i{k_2} = \frac{{ - 2 + 4i}}{2} = - 1 + 2i

Then the general solution of the homogeneous equation is

y0=ex(C1cos2x+C2sin2x){y_0} = {e^{ - x}}\left( {{C_1}\cos 2x + {C_2}\sin 2x} \right)

We will seek a particular solution in the form

y~=Asin2x+Bcos2xy~=2Acos2x2Bsin2xy~=4Asin2x4Bcos2x\widetilde y = A\sin 2x + B\cos 2x \Rightarrow {\widetilde y^\prime } = 2A\cos 2x - 2B\sin 2x \Rightarrow {\widetilde y^{\prime \prime }} = - 4A\sin 2x - 4B\cos 2x

Substitute the obtained values ​​into the original equation:

4Asin2x4Bcos2x+4Acos2x4Bsin2x+5Asin2x+5Bcos2x=17sin2x- 4A\sin 2x - 4B\cos 2x + 4A\cos 2x - 4B\sin 2x + 5A\sin 2x + 5B\cos 2x = 17\sin 2x

(A4B)sin2x+(4A+B)cos2x=17sin2x(A - 4B)\sin 2x + (4A + B)\cos 2x = 17\sin 2x

{A4B=174A+B=0A=1,B=4\left\{ \begin{array}{l} A - 4B = 17\\ 4A + B = 0 \end{array} \right. \Rightarrow A = 1,B = - 4

So,

y~=sin2x4cos2x\widetilde y = \sin 2x - 4\cos 2x

y=y0+y~=ex(C1cos2x+C2sin2x)+sin2x4cos2xy = {y_0} + \widetilde y = {e^{ - x}}\left( {{C_1}\cos 2x + {C_2}\sin 2x} \right) + \sin 2x - 4\cos 2x

Answer: y=ex(C1cos2x+C2sin2x)+sin2x4cos2xy = {e^{ - x}}\left( {{C_1}\cos 2x + {C_2}\sin 2x} \right) + \sin 2x - 4\cos 2x



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Masande
15.07.21, 17:58

In question1 How to get D =2500−1600=900? can you explain in detail

LATEST TUTORIALS
APPROVED BY CLIENTS