Question #217114

p-3q = sinx+cosy


1
Expert's answer
2021-07-14T18:17:27-0400
p3q=sinx+cosyp-3q = \sin x+\cos y

psinx=3q+cosy=a(say),p- \sin x=3q +\cos y=a (say),

where aa is an arbitrary constant.

We have


{psinx=a3q+cosy=a=>={zx=a+sinxzy=13(acosy)\begin{cases} p-\sin x=a \\ 3q+\cos y=a \end{cases}=> =\begin{cases} \dfrac{\partial z}{\partial x}=a+\sin x \\ \dfrac{\partial z}{\partial y}=\dfrac{1}{3}(a-\cos y) \end{cases}

dz=(a+sinx)dx+(13(acosy))dydz=(a+\sin x)dx+(\dfrac{1}{3}(a-\cos y))dy

z=axcosx+13ay13sinybz=ax-\cos x+\dfrac{1}{3}ay-\dfrac{1}{3}\sin y-b

Or


z=a(x13y)(cosx+13siny+b)z=a(x-\dfrac{1}{3}y)-(\cos x+\dfrac{1}{3}\sin y+b)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS