Question #216983

y"(t) + 4y'(t) + 4y(t) = 4e-2t, y(0) = -1, y'(0) = 4


1
Expert's answer
2021-07-14T14:44:38-0400

Characteristic equation corresponding to the given homogeneous differential equation

y(t)+4y(t)+4y=0y''(t)+4y'(t)+4y=0 is r2+4r+4=0r^2+4r+4=0

(r+2)2=0r=2,2\Rightarrow (r+2)^2=0\Rightarrow r=-2,-2

General solution to the homogeneous differential equation is

yh=c1e2t+c2te2ty_{h}=c_{1}e^{-2t}+c_2te^{-2t}

Use Method of variation of parameters to find the particular solution

Particular solution to the given differential equation is

yp=Au+Bv,u=e2t,v=te2ty_{p}=Au+Bv,u=e^{-2t},v={te^{-2t}} where

A=vg(t)uvvudt,B=ug(t)uvvudt,g(t)=4e2tA=\int \frac{-vg(t)}{uv'-vu'}dt,B=\int \frac{ug(t)}{uv'-vu'}dt,g(t)=4e^{-2t}

Find uvvuuv'-vu'

Now

uvvu=(e2t)[e2t2te2t](te2t)(2e2t)=e4t2te4t+2te4t=e4tuv'-vu'=(e^{-2t})\left [ e^{-2t}-2te^{-2t} \right ]-(te^{-2t})(-2e^{-2t})=e^{-4t}-2te^{-4t}+2te^{-4t}=e^{-4t}

A=e2t(4e2t)e4tdt=4dt=4tA=\int \frac{-e^{-2t}(4e^{-2t})}{e^{-4t}}dt=-4\int dt=-4t

B=te2t(4e2t)e4tdt=4(t)dt=t22B=\int \frac{te^{-2t}(4e^{-2t})}{e^{-4t}}dt=4\int(t) dt=\frac{t^2}{2}

Using the above, we get

yp=(4t)(e2t)+(t22)(te2t)=4te2t+t32e2ty_{p}=(-4t)(e^{-2t})+(\frac{t^2}{2})({te^{-2t}})=-4te^{-2t}+\frac{t^3}{2}e^{-2t}

General solution to the given differential equation is

y=yh+yp=c1e2t+c2te2t4te2t+t32e2ty=y_{h}+y_{p}=c_{1}e^{-2t}+c_{2}te^{-2t}-4te^{-2t}+\frac{t^3}{2}e^{-2t}

Find the value of c1c_{1} and c2c_{2} using the given initial conditions y(0)=1,y(0)=4y(0)=-1,y'(0)=4

y=c1e2t+c2te2t4te2t+t32e2ty=c_{1}e^{-2t}+c_{2}te^{-2t}-4te^{-2t}+\frac{t^3}{2}e^{-2t}

y(t)=2c1e2t+c2(e2t2te2t)4e2t+8te4t+3t22e2tt3e2t\Rightarrow y'(t)=-2c_{1}e^{-2t}+c_{2}(e^{-2t}-2te^{-2t})-4e^{-2t}+8te^{-4t}+\frac{3t^2}{2}e^{-2t}-t^3e^{-2t}

y(0)=1c1+0=1c1=1y(0)=-1\Rightarrow c_{1}+0=-1\Rightarrow c_{1}=-1

y(0)=42c1+c2(10)4(1)+8(0)+00=4y'(0)=4\Rightarrow -2c_{1}+c_{2}(1-0)-4(1)+8(0)+0-0=4

c1+c2=0c2=1\Rightarrow -c_{1}+c_{2}=0\Rightarrow c_{2}=-1

Therefore, solution to the given differential equation is

y=e2tte2t4te2t+t32e2ty=-e^{-2t}-te^{-2t}-4te^{-2t}+\frac{t^3}{2}e^{-2t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS