Characteristic equation corresponding to the given homogeneous differential equation
y′′(t)+4y′(t)+4y=0 is r2+4r+4=0
⇒(r+2)2=0⇒r=−2,−2
General solution to the homogeneous differential equation is
yh=c1e−2t+c2te−2t
Use Method of variation of parameters to find the particular solution
Particular solution to the given differential equation is
yp=Au+Bv,u=e−2t,v=te−2t where
A=∫uv′−vu′−vg(t)dt,B=∫uv′−vu′ug(t)dt,g(t)=4e−2t
Find uv′−vu′
Now
uv′−vu′=(e−2t)[e−2t−2te−2t]−(te−2t)(−2e−2t)=e−4t−2te−4t+2te−4t=e−4t
A=∫e−4t−e−2t(4e−2t)dt=−4∫dt=−4t
B=∫e−4tte−2t(4e−2t)dt=4∫(t)dt=2t2
Using the above, we get
yp=(−4t)(e−2t)+(2t2)(te−2t)=−4te−2t+2t3e−2t
General solution to the given differential equation is
y=yh+yp=c1e−2t+c2te−2t−4te−2t+2t3e−2t
Find the value of c1 and c2 using the given initial conditions y(0)=−1,y′(0)=4
y=c1e−2t+c2te−2t−4te−2t+2t3e−2t
⇒y′(t)=−2c1e−2t+c2(e−2t−2te−2t)−4e−2t+8te−4t+23t2e−2t−t3e−2t
y(0)=−1⇒c1+0=−1⇒c1=−1
y′(0)=4⇒−2c1+c2(1−0)−4(1)+8(0)+0−0=4
⇒−c1+c2=0⇒c2=−1
Therefore, solution to the given differential equation is
y=−e−2t−te−2t−4te−2t+2t3e−2t
Comments