Question #216972

Solve for x and y in the following set of simultaneous differential equations by using D-operator methods: (D-2)x + Dy = 10sin2t

Dx + (D+2)y = 0


1
Expert's answer
2021-08-10T12:56:18-0400

We know that the operator DD means a derivative D=ddtD=\frac{d}{dt} , but for now we will assume that this is just another letter and solve the specified system of equations by the "addition" method.



{(D2)x+Dy=10sin2t×(D)Dx+(D+2)y=0×(D2){D(D2)x+D2y=D(10sin2t)Subtract the lower one from the upper equationD(D2)x+(D24)y=0(D2D2+4)y=D(10sin2t)4y=ddt(10sin2t)=20cos2ty(t)=5cos2tTo find the functionx(t),go back to the original system.{(D2)x+Dy=10sin2t×(D+2)Dx+(D+2)y=0×(D){(D24)x+D(D+2)y=(D+2)(10sin2t)Subtract the lower one from the upper equationD2x+D(D+2)y=0(D2D24)x=(D+2)(10sin2t)4x=(ddt+2)(10sin2y)=20cos2t+20sin2tx(t)=5cos2t5sin2t\left\{\begin{array}{l} \left.\left(D-2\right)x+Dy=10\sin2t\right|\times\left(D\right)\\[0.3cm] \left.Dx+\left(D+2\right)y=0\right|\times\left(D-2\right) \end{array}\right.\\[0.3cm] \left\{\begin{array}{l} D\left(D-2\right)x+D^2y=D\left(10\sin2t\right)\\[0.3cm] \text{Subtract the lower one from the upper equation}\\[0.3cm] D\left(D-2\right)x+\left(D^2-4\right)y=0 \end{array}\right.\\[0.3cm]\\[0.3cm] \left(\cancel{D^2}-\cancel{D^2}+4\right)y=D\left(10\sin2t\right)\\[0.3cm] 4y=\frac{d}{dt}\left(10\sin2t\right)=20\cos2t\to\boxed{y(t)=5\cos2t}\\[0.3cm] \text{To find the function} \quad x(t), \text{go back to the original system.}\\[0.3cm] \left\{\begin{array}{l} \left.\left(D-2\right)x+Dy=10\sin2t\right|\times\left(D+2\right)\\[0.3cm] \left.Dx+\left(D+2\right)y=0\right|\times\left(D\right) \end{array}\right.\\[0.3cm] \left\{\begin{array}{l} \left(D^2-4\right)x+D\left(D+2\right)y=\left(D+2\right)\left(10\sin2t\right)\\[0.3cm] \text{Subtract the lower one from the upper equation}\\[0.3cm] D^2x+D\left(D+2\right)y=0 \end{array}\right.\\[0.3cm]\\[0.3cm] \left(\cancel{D^2}-\cancel{D^2}-4\right)x=\left(D+2\right)\left(10\sin2t\right)\\[0.3cm] -4x=\left(\frac{d}{dt}+2\right)\left(10\sin2y\right)=20\cos2t+20\sin2t\to\\[0.3cm] \boxed{x(t)=-5\cos2t-5\sin2t}\\[0.3cm]

ANSWER



{x(t)=5cos2t5sin2ty(y)=5cos2t\left\{\begin{array}{l} x(t)=-5\cos2t-5\sin2t\\[0.3cm] y(y)=5\cos2t \end{array}\right.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS