Answer to Question #216802 in Differential Equations for Masande

Question #216802

In the L-C Circuit   L= 1 HENRY , C 1/16 farad and E(t) =60 volt

The differential equation q’’ +16q’  = 60 represent the capacitor charger at anytime t

Q(0)=0 and q’(0) =0 = i(0) =0 find the charge q on the capacitor at anytime t


1
Expert's answer
2021-07-14T08:02:58-0400

Solve:


we know i(current)="\\frac{dq}{dt}"

Thus,

"\\frac{di}{dt}+16i=60"


"\\frac{di}{dt}=60-16i \\newline\n\\frac{di}{60-16i}=dt \\newline\nintegrating\\ both\\ side \\newline\n\n\\int_0^i\\frac{di}{60-16i}=\\int_0^t dt \\newline\n\\ln(60-16i)-ln(60)=t \\newline\n\\ln\\frac{(60-16i)}{60}=t \\newline\n60-16i=60 \\epsilon^t \\newline\ni=\\frac{1}{16}(60-60 \\epsilon^t) \\newline\ni= \\frac{dq}{dt}=\\frac{60}{16}(1-\\epsilon^t) \\newline\n\\int_0^qdq=\\frac{15}{4}\\int_0^t(1-\\epsilon^t)dt \\newline\nq=\\frac{15}{4}(t-(\\epsilon^t-1))\\newline\nq=\\frac{15}{4}(t+1-\\epsilon^t)"

Thus charge is given by "q=\\frac{15}{4}(t+1-\\epsilon^t)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Masande
14.07.21, 15:44

Thanks very much

Leave a comment