Question #216802

In the L-C Circuit   L= 1 HENRY , C 1/16 farad and E(t) =60 volt

The differential equation q’’ +16q’  = 60 represent the capacitor charger at anytime t

Q(0)=0 and q’(0) =0 = i(0) =0 find the charge q on the capacitor at anytime t


1
Expert's answer
2021-07-14T08:02:58-0400

Solve:


we know i(current)=dqdt\frac{dq}{dt}

Thus,

didt+16i=60\frac{di}{dt}+16i=60


didt=6016idi6016i=dtintegrating both side0idi6016i=0tdtln(6016i)ln(60)=tln(6016i)60=t6016i=60ϵti=116(6060ϵt)i=dqdt=6016(1ϵt)0qdq=1540t(1ϵt)dtq=154(t(ϵt1))q=154(t+1ϵt)\frac{di}{dt}=60-16i \newline \frac{di}{60-16i}=dt \newline integrating\ both\ side \newline \int_0^i\frac{di}{60-16i}=\int_0^t dt \newline \ln(60-16i)-ln(60)=t \newline \ln\frac{(60-16i)}{60}=t \newline 60-16i=60 \epsilon^t \newline i=\frac{1}{16}(60-60 \epsilon^t) \newline i= \frac{dq}{dt}=\frac{60}{16}(1-\epsilon^t) \newline \int_0^qdq=\frac{15}{4}\int_0^t(1-\epsilon^t)dt \newline q=\frac{15}{4}(t-(\epsilon^t-1))\newline q=\frac{15}{4}(t+1-\epsilon^t)

Thus charge is given by q=154(t+1ϵt)q=\frac{15}{4}(t+1-\epsilon^t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Masande
14.07.21, 15:44

Thanks very much

LATEST TUTORIALS
APPROVED BY CLIENTS