Question #216518

solve each of the following initial value problems

  1. (2x-5y)dx+(4x-y)dy=0 y(1)=4
  2. (3x2+9xy+5y2)dx-(6x2+4xy)dy=0 y(1)=4
1
Expert's answer
2021-07-13T08:50:41-0400

1.


(2x5y)dx+(4xy)dy=0(2x-5y)dx+(4x-y)dy=0

25yx+(4yx)dydx=02-5\dfrac{y}{x}+(4-\dfrac{y}{x})\dfrac{dy}{dx}=0

Let y=xv.y=xv. Then dydx=v+xdvdx\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}


25v+(4v)(v+xdvdx)=02-5v+(4-v)(v+x\dfrac{dv}{dx})=0

25v+4vv2+x(4v)dvdx=02-5v+4v-v^2+x(4-v)\dfrac{dv}{dx}=0

v4v2+v2dv=dxx\int\dfrac{v-4}{v^2+v-2}dv=-\int\dfrac{dx}{x}

v4v2+v2=Av1+Bv+2=A(v+2)+B(v1)(v1)(v+2)\dfrac{v-4}{v^2+v-2}=\dfrac{A}{v-1}+\dfrac{B}{v+2}=\dfrac{A(v+2)+B(v-1)}{(v-1)(v+2)}


A(v+2)+B(v1)=v4A(v+2)+B(v-1)=v-4

v=1:3A=3=>A=1v=1: 3A=-3=>A=-1

v=2:3B=6=>B=2v=-2: -3B=-6=>B=2


dvv1+2dvv+2=dxx-\int\dfrac{dv}{v-1}+2\int\dfrac{dv}{v+2}=-\int\dfrac{dx}{x}

lnv1+2lnv+2=lnx+lnC-\ln|v-1|+2\ln|v+2|=-\ln|x|+\ln C

x(v+2)2(v1)=C\dfrac{x(v+2)^2}{(v-1)}=C

(y+2x)2(yx)=C\dfrac{(y+2x)^2}{(y-x)}=C

y(1)=4y(1)=4


C=(4+2(1))2(41)=12C=\dfrac{(4+2(1))^2}{(4-1)}=12

(y+2x)2(yx)=12\dfrac{(y+2x)^2}{(y-x)}=12

2.


(3x2+9xy+5y2)dx(6x2+4xy)dy=0(3x^2+9xy+5y^2)dx-(6x^2+4xy)dy=0

3+9yx+5(yx)2(6+4yx)dydx=03+9\dfrac{y}{x}+5(\dfrac{y}{x})^2-(6+4\dfrac{y}{x})\dfrac{dy}{dx}=0

Let y=xv.y=xv. Then dydx=v+xdvdx\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}


3+9v+5v2(6+4v)(v+xdvdx)=03+9v+5v^2-(6+4v)(v+x\dfrac{dv}{dx})=0

3+9v+5v26v4v2x(6+4v)dvdx=03+9v+5v^2-6v-4v^2-x(6+4v)\dfrac{dv}{dx}=0

6+4vv2+3v+3dv=dxx\int\dfrac{6+4v}{v^2+3v+3}dv=\int\dfrac{dx}{x}



d(v2+3v+3)=(2v+3)dvd(v^2+3v+3)=(2v+3)dv


2ln(v2+3v+3)=lnx+lnC2\ln(v^2+3v+3)=\ln|x|+\ln C


(v2+3v+3)2x=C\dfrac{(v^2+3v+3)^2}{x}=C

(y2+3xy+3x2)2x5=C\dfrac{(y^2+3xy+3x^2)^2}{x^5}=C

y(1)=4y(1)=4


(42+3(1)(4)+3(1)2)215=C\dfrac{(4^2+3(1)(4)+3(1)^2)^2}{1^5}=C

C=961C=961

(y2+3xy+3x2)2x5=961\dfrac{(y^2+3xy+3x^2)^2}{x^5}=961


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS