1.
(2x−5y)dx+(4x−y)dy=0
2−5xy+(4−xy)dxdy=0 Let y=xv. Then dxdy=v+xdxdv
2−5v+(4−v)(v+xdxdv)=0
2−5v+4v−v2+x(4−v)dxdv=0
∫v2+v−2v−4dv=−∫xdx
v2+v−2v−4=v−1A+v+2B=(v−1)(v+2)A(v+2)+B(v−1)
A(v+2)+B(v−1)=v−4
v=1:3A=−3=>A=−1
v=−2:−3B=−6=>B=2
−∫v−1dv+2∫v+2dv=−∫xdx
−ln∣v−1∣+2ln∣v+2∣=−ln∣x∣+lnC
(v−1)x(v+2)2=C
(y−x)(y+2x)2=C y(1)=4
C=(4−1)(4+2(1))2=12
(y−x)(y+2x)2=12
2.
(3x2+9xy+5y2)dx−(6x2+4xy)dy=0
3+9xy+5(xy)2−(6+4xy)dxdy=0 Let y=xv. Then dxdy=v+xdxdv
3+9v+5v2−(6+4v)(v+xdxdv)=0
3+9v+5v2−6v−4v2−x(6+4v)dxdv=0
∫v2+3v+36+4vdv=∫xdx
d(v2+3v+3)=(2v+3)dv
2ln(v2+3v+3)=ln∣x∣+lnC
x(v2+3v+3)2=C
x5(y2+3xy+3x2)2=C y(1)=4
15(42+3(1)(4)+3(1)2)2=C
C=961
x5(y2+3xy+3x2)2=961
Comments