Question #216514

solve the following homogeneous equations

  1. dy/dx=(2x-7y)/(3y-8x)
  2. (2xy+3y2)dx-(2xy+x2)dy=0
  3. xsin(y/x)(ydx+xdy)+ycos(y/x)(xdy-ydx)=0
1
Expert's answer
2021-07-19T07:45:04-0400

Solution

1.dydx=2x7y3y8x\frac{dy}{dx}=\frac{2x-7y}{3y-8x}

Take

y=vx

dydx=v+xdvdx\frac{dy}{dx}=v+x\frac{dv}{dx}

v+xdvdx=2x7vx8vx8x\frac{dv}{dx}=\frac{2x-7vx}{8vx-8x}

Divide the R.H.S with x and seperate by variables

8v8v8v2+2dv=1xdx\frac{8v-8}{v-8v^2+2}dv=\frac1xdx

Integrate both sides respectively,we have;

13ln(8v2v2)+365(ln(16v+651)ln(16651)26=ln(x)+C\frac{-13ln(8v^2-v-2)+3\sqrt{65}(ln(16v+\sqrt{65}-1)-ln(16-\sqrt{65}-1)}{26}=ln(x)+C

But v=yx\frac yx ,replace in the equation;

ln(8y2x2yx2)+365(ln(16yx+651)ln(16yx651)26=ln(x)+C\frac{-ln(8\frac{y^2}{x^2}-\frac yx-2)+3\sqrt{65}(ln(16\frac yx+\sqrt{65}-1)-ln(16\frac yx-\sqrt{65}-1)}{26}=ln(x)+C

2.

(2xy+3y2)dx-(2xy+x2)dy=0

Rewrite as follows,

2xy+3y22xy+x2=dydx\frac{2xy+3y^2}{2xy+x^2}=\frac{dy}{dx}

Take y=vx

dydx=v+xdvdx\frac{dy}{dx}=v+x\frac{dv}{dx}

Replace

2vx2+3v2x22vx2+x2=v+xdvdx\frac{2vx^2+3v^2x^2}{2vx^2+x^2}=v+x\frac{dv}{dx}

Divide by x2 and put like terms together.

2v+1v2+vdv=1xdx\frac{2v+1}{v^2+v}dv=\frac 1xdx

Integrate both sides;

ln(v2+v)=ln(x)+C

Replace back v=yx\frac yx

ln(y2x2\frac{y^2}{x^2} +yx\frac yx)=ln(x)+C

3.

Rewrite as follows;

(chain(y/X)-y2cos(y/x)dx+(x2sin(y/x)-xycos(y/x)dy=0

dydx\frac{dy}{dx} =y2cos(yx)xysin(yx)x2sin(yx)+xycos(yx)\frac{y^2cos(\frac yx)-xysin(\frac yx)}{x^2sin(\frac yx)+xycos(\frac yx)}

Take

y=vx and dydx=v+xdvdx\frac {dy}{dx}=v+x\frac {dv}{dx}

Replace in the equation and divide x2

v+xdvdx=v2cosvvsinvsinv+vcosvv+x\frac{dv}{dx}=\frac{v^2cosv-vsinv}{sin v+vcosv}

Seperate variables;

sinv+vcosv2vsinvdv=1xdx\frac{sinv +vcosv}{-2vsinv}dv=\frac 1xdx

Integrate both sides using suitable methods,we have;

ln(sinv)ln(v)2=ln(x)+C\frac{-ln(sin v)-ln( v)}{2}=ln(x)+C

Replace back v=yx\frac yx


ln(sin(yx)ln(yx)2=ln(x)+C\frac{-ln(sin(\frac yx)-ln(\frac yx)}{2}=ln(x )+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS