Solution
1.dxdy=3y−8x2x−7y
Take
y=vx
dxdy=v+xdxdv
v+xdxdv=8vx−8x2x−7vx
Divide the R.H.S with x and seperate by variables
v−8v2+28v−8dv=x1dx
Integrate both sides respectively,we have;
26−13ln(8v2−v−2)+365(ln(16v+65−1)−ln(16−65−1)=ln(x)+C
But v=xy ,replace in the equation;
26−ln(8x2y2−xy−2)+365(ln(16xy+65−1)−ln(16xy−65−1)=ln(x)+C
2.
(2xy+3y2)dx-(2xy+x2)dy=0
Rewrite as follows,
2xy+x22xy+3y2=dxdy
Take y=vx
dxdy=v+xdxdv
Replace
2vx2+x22vx2+3v2x2=v+xdxdv
Divide by x2 and put like terms together.
v2+v2v+1dv=x1dx
Integrate both sides;
ln(v2+v)=ln(x)+C
Replace back v=xy
ln(x2y2 +xy)=ln(x)+C
3.
Rewrite as follows;
(chain(y/X)-y2cos(y/x)dx+(x2sin(y/x)-xycos(y/x)dy=0
dxdy =x2sin(xy)+xycos(xy)y2cos(xy)−xysin(xy)
Take
y=vx and dxdy=v+xdxdv
Replace in the equation and divide x2
v+xdxdv=sinv+vcosvv2cosv−vsinv
Seperate variables;
−2vsinvsinv+vcosvdv=x1dx
Integrate both sides using suitable methods,we have;
2−ln(sinv)−ln(v)=ln(x)+C
Replace back v=xy
2−ln(sin(xy)−ln(xy)=ln(x)+C
Comments