Solution
1.d y d x = 2 x − 7 y 3 y − 8 x \frac{dy}{dx}=\frac{2x-7y}{3y-8x} d x d y = 3 y − 8 x 2 x − 7 y
Take
y=vx
d y d x = v + x d v d x \frac{dy}{dx}=v+x\frac{dv}{dx} d x d y = v + x d x d v
v+xd v d x = 2 x − 7 v x 8 v x − 8 x \frac{dv}{dx}=\frac{2x-7vx}{8vx-8x} d x d v = 8 vx − 8 x 2 x − 7 vx
Divide the R.H.S with x and seperate by variables
8 v − 8 v − 8 v 2 + 2 d v = 1 x d x \frac{8v-8}{v-8v^2+2}dv=\frac1xdx v − 8 v 2 + 2 8 v − 8 d v = x 1 d x
Integrate both sides respectively,we have;
− 13 l n ( 8 v 2 − v − 2 ) + 3 65 ( l n ( 16 v + 65 − 1 ) − l n ( 16 − 65 − 1 ) 26 = l n ( x ) + C \frac{-13ln(8v^2-v-2)+3\sqrt{65}(ln(16v+\sqrt{65}-1)-ln(16-\sqrt{65}-1)}{26}=ln(x)+C 26 − 13 l n ( 8 v 2 − v − 2 ) + 3 65 ( l n ( 16 v + 65 − 1 ) − l n ( 16 − 65 − 1 ) = l n ( x ) + C
But v=y x \frac yx x y ,replace in the equation;
− l n ( 8 y 2 x 2 − y x − 2 ) + 3 65 ( l n ( 16 y x + 65 − 1 ) − l n ( 16 y x − 65 − 1 ) 26 = l n ( x ) + C \frac{-ln(8\frac{y^2}{x^2}-\frac yx-2)+3\sqrt{65}(ln(16\frac yx+\sqrt{65}-1)-ln(16\frac yx-\sqrt{65}-1)}{26}=ln(x)+C 26 − l n ( 8 x 2 y 2 − x y − 2 ) + 3 65 ( l n ( 16 x y + 65 − 1 ) − l n ( 16 x y − 65 − 1 ) = l n ( x ) + C
2.
(2xy+3y2 )dx-(2xy+x2 )dy=0
Rewrite as follows,
2 x y + 3 y 2 2 x y + x 2 = d y d x \frac{2xy+3y^2}{2xy+x^2}=\frac{dy}{dx} 2 x y + x 2 2 x y + 3 y 2 = d x d y
Take y=vx
d y d x = v + x d v d x \frac{dy}{dx}=v+x\frac{dv}{dx} d x d y = v + x d x d v
Replace
2 v x 2 + 3 v 2 x 2 2 v x 2 + x 2 = v + x d v d x \frac{2vx^2+3v^2x^2}{2vx^2+x^2}=v+x\frac{dv}{dx} 2 v x 2 + x 2 2 v x 2 + 3 v 2 x 2 = v + x d x d v
Divide by x2 and put like terms together.
2 v + 1 v 2 + v d v = 1 x d x \frac{2v+1}{v^2+v}dv=\frac 1xdx v 2 + v 2 v + 1 d v = x 1 d x
Integrate both sides;
ln(v2 +v)=ln(x)+C
Replace back v=y x \frac yx x y
ln(y 2 x 2 \frac{y^2}{x^2} x 2 y 2 +y x \frac yx x y )=ln(x)+C
3.
Rewrite as follows;
(chain(y/X)-y2 cos(y/x)dx+(x2 sin(y/x)-xycos(y/x)dy=0
d y d x \frac{dy}{dx} d x d y =y 2 c o s ( y x ) − x y s i n ( y x ) x 2 s i n ( y x ) + x y c o s ( y x ) \frac{y^2cos(\frac yx)-xysin(\frac yx)}{x^2sin(\frac yx)+xycos(\frac yx)} x 2 s in ( x y ) + x ycos ( x y ) y 2 cos ( x y ) − x ys in ( x y )
Take
y=vx and d y d x = v + x d v d x \frac {dy}{dx}=v+x\frac {dv}{dx} d x d y = v + x d x d v
Replace in the equation and divide x2
v + x d v d x = v 2 c o s v − v s i n v s i n v + v c o s v v+x\frac{dv}{dx}=\frac{v^2cosv-vsinv}{sin v+vcosv} v + x d x d v = s in v + v cos v v 2 cos v − v s in v
Seperate variables;
s i n v + v c o s v − 2 v s i n v d v = 1 x d x \frac{sinv +vcosv}{-2vsinv}dv=\frac 1xdx − 2 v s in v s in v + v cos v d v = x 1 d x
Integrate both sides using suitable methods,we have;
− l n ( s i n v ) − l n ( v ) 2 = l n ( x ) + C \frac{-ln(sin v)-ln( v)}{2}=ln(x)+C 2 − l n ( s in v ) − l n ( v ) = l n ( x ) + C
Replace back v=y x \frac yx x y
− l n ( s i n ( y x ) − l n ( y x ) 2 = l n ( x ) + C \frac{-ln(sin(\frac yx)-ln(\frac yx)}{2}=ln(x )+C 2 − l n ( s in ( x y ) − l n ( x y ) = l n ( x ) + C
Comments