Question #216370

Solve the initial-value problem: (dx/dt)+(tant)x=(cost)^2, x(0)=-1.


1
Expert's answer
2021-07-12T18:46:32-0400

Substitution:

x(t)=u(t)v(t)dxdt=x=uv+uvx(t) = u(t)v(t) \Rightarrow \frac{{dx}}{{dt}} = x' = u'v + uv'

Then

uv+uv+uvtant=cos2tu'v + uv' + uv\tan t = {\cos ^2}t

uv+u(v+vtant)=cos2tu'v + u\left( {v' + v\tan t} \right) = {\cos ^2}t

Let

v+vtant=0dvdt=vtantdvv=sintcostdt=dcostcostlnv=lncostv=costv' + v\tan t = 0 \Rightarrow \frac{{dv}}{{dt}} = - v\tan t \Rightarrow \frac{{dv}}{v} = - \frac{{\sin t}}{{\cos t}}dt = \frac{{d\cos t}}{{\cos t}} \Rightarrow \ln v = \ln \cos t \Rightarrow v = \cos t

Then

ucost=cos2tu=costu=sint+Cu'\cos t = {\cos ^2}t \Rightarrow u' = \cos t \Rightarrow u = \sin t + C

Then

x=uv=(sint+C)costx = uv = \left( {\sin t + C} \right)\cos t

x(0)=1(sin0+C)cos0=1C=1x(0) = - 1 \Rightarrow (\sin 0 + C)\cos 0 = - 1 \Rightarrow C = - 1

Answer: x=(sint1)costx = \left( {\sin t - 1} \right)\cos t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS