Substitution:
x(t)=u(t)v(t)⇒dtdx=x′=u′v+uv′
Then
u′v+uv′+uvtant=cos2t
u′v+u(v′+vtant)=cos2t
Let
v′+vtant=0⇒dtdv=−vtant⇒vdv=−costsintdt=costdcost⇒lnv=lncost⇒v=cost
Then
u′cost=cos2t⇒u′=cost⇒u=sint+C
Then
x=uv=(sint+C)cost
x(0)=−1⇒(sin0+C)cos0=−1⇒C=−1
Answer: x=(sint−1)cost
Comments