Question #216346
Bernoulli's DE

(2y^3-x^3)dx+3x^2ydy=0
1
Expert's answer
2021-07-15T06:17:37-0400

Solution;

Rewrtie the equation as follows:

dydx\frac{dy}{dx} +P(x)y=Q(x)yn

2y3x33x2y+dydx=0\frac{2y^3-x^3}{3x^2y}+\frac{dy}{dx}=0

dydxx3y=23x2y2\frac{dy}{dx}-\frac{x}{3y}=-\frac{2}{3x^2}y^2

The equation is not a Bernoulli's so we solve as an homogenous equation.

dydx\frac{dy}{dx} =-2y3x33x2y\frac{2y^3-x^3}{3x^2y}

Take

y=Vx

dydx\frac{dy}{dx} =v+xdvdx\frac{dv}{dx}

v+xdvdx\frac{dv}{dx} =-2v3x3x33vx3\frac{2v^3x^3-x3}{3vx^3}

Divide the R.H.S with x3

v+xdvdx\frac{dv}{dx} =12v33v\frac{1-2v^3}{3v}

Separate the variables;

3v12v33v2\frac{3v}{1-2v^3-3v^2}dv=1x\frac1x dx

Integrating both sides;

3(ln(2v1)9-\frac{ln(2v-1)}{9} +ln(v+1)9\frac{ln(v+1)}{9}+33v+3\frac{3}{3v+3} =ln(x)+C

But v=yx\frac yx

-ln(yx1)3\frac{ln(\frac yx-1)}{3} +ln(yx+1)3\frac{ln(\frac yx+1)}{3}+33yx+3\frac{3}{3\frac yx+3} =ln(x)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS