Question #216345
(2y^3-x^3)dx+3x^2ydy=0
1
Expert's answer
2021-07-12T18:27:30-0400
(2y3x3)dx+3x2ydy=0(2y^3-x^3)dx+3x^2ydy=0

3yxdydx+2y3x31=03\dfrac{y}{x}\cdot\dfrac{dy}{dx}+2\dfrac{y^3}{x^3}-1=0


Let y=xvy=xv


dydx=v+xdvdx\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}

3v(v+xdvdx)+2v31=03v(v+x\dfrac{dv}{dx})+2v^3-1=0

3xvdvdx=2v33v2+13xv\dfrac{dv}{dx}=-2v^3-3v^2+1

3vdv2v33v2+1=dxx\dfrac{3vdv}{-2v^3-3v^2+1}=\dfrac{dx}{x}

2v3+3v21=(v+1)2(2v1)2v^3+3v^2-1=(v+1)^2(2v-1)

3v2v3+3v21=A2v1+Bv+1+C(v+1)2\dfrac{-3v}{2v^3+3v^2-1}=\dfrac{A}{2v-1}+\dfrac{B}{v+1}+\dfrac{C}{(v+1)^2}

A(v+1)2+B(2v1)(v+1)+C(2v1)=3vA(v+1)^2+B(2v-1)(v+1)+C(2v-1)=-3v

v=12:94A=32=>A=23v=\dfrac{1}{2}:\dfrac{9}{4}A=-\dfrac{3}{2}=>A=-\dfrac{2}{3}

v=1:3C=3=>C=1v=-1: -3C=3=>C=-1

v=0:ABC=0=>B=AC=13v=0:A-B-C=0=>B=A-C=\dfrac{1}{3}

23dv2v1+13dvv+1dv(v+1)2-\dfrac{2}{3}\int\dfrac{dv}{2v-1}+\dfrac{1}{3}\int\dfrac{dv}{v+1}-\int\dfrac{dv}{(v+1)^2}

=dxx=\int\dfrac{dx}{x}

13ln2v1+13lnv+1+(1v+1)-\dfrac{1}{3}\ln|2v-1|+\dfrac{1}{3}\ln|v+1|+(\dfrac{1}{v+1})

=lnx+lnC=\ln|x|+\ln C

13lnv+12v1+1v+1=ln(Cx)\dfrac{1}{3}\ln\dfrac{v+1}{2v-1}+\dfrac{1}{v+1}=\ln(Cx)

13lny+x2yx+xy+x=ln(Cx)\dfrac{1}{3}\ln\dfrac{y+x}{2y-x}+\dfrac{x}{y+x}=\ln(Cx)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS