Question #216342
(a) Find the integral surface of the following partial differential equation: (6) x(z+2a)p+ (xz+2yz + 2ay)q=z(z + a) Also find a particular solution passing through y = 0, 23+x(z + a)
1
Expert's answer
2021-07-14T13:13:57-0400

dxx(z+2a)=dyxz+2yz+2ay=dzz(z+a)\frac{dx}{x(z+2a)}=\frac{dy}{xz+2yz+2ay}=\frac{dz}{z(z+a)}

dxx=(z+2a)dzz(z+a)\frac{dx}{x}=\frac{(z+2a)dz}{z(z+a)}

dxx=dzz+adzz(z+a)\int\frac{dx}{x}=\intop\frac{dz}{z}+\int\frac{adz}{z(z+a)}

1z(z+a)=Az+Bz+a\frac{1}{z(z+a)}=\frac{A}{z}+\frac{B}{z+a}

A(z+a)+Bz=aA(z+a)+Bz=a

A+B=0A+B=0

A=1

B=-1

1z(z+a)=1z1z+a\frac{1}{z(z+a)}=\frac{1}{z}-\frac{1}{z+a}

log(x)=log(z)alog(z+a)+log(c1)=log(c1z2z+a)log(x)=log(z)-a log(z+a)+ log(c_1)=log(\frac{c_1-z^2}{z+a})

c1=x(z+a)z2c_1=\frac{x(z+a)}{z^2}

dyxz+2yz+2ay=dzz(z+a)\frac{dy}{xz+2yz+2ay}=\frac{dz}{z(z+a)}

(z+a)dyc1z3+2y(z+1)2=dzz(z+a)\frac{(z+a)dy}{c_1-z^3+2y(z+1)^2}=\frac{dz}{z(z+a)}

dydzyz=c1z2(z+a)2\frac{dy}{dz}-\frac{y}{z}=\frac{c_1-z^2}{(z+a)^2}

y=uvy=uv

y=uv+vyy'=u'v+v'y

vv/z=0v'-v/z=0

v=z

dydz=c1z2(z+a)2\frac{dy}{dz}=\frac{c_1-z^2}{(z+a)^2}

c1=log(z+a)+1z+a+c2zc_1=log(z+a)+\frac{1}{z+a}+c_2-z

c2=yzx(z+a)z2log(z+a)+1z+ac_2=\frac{y}{z}-\frac{x(z+a)}{z^2}-log(z+a)+\frac{1}{z+a}

For y=0.23+x(r+a)

c2=0.23+x(z+a)zx(z+a)z2log(z+a)+1z+ac_2=\frac{0.23+x(z+a)}{z}-\frac{x(z+a)}{z^2}-log(z+a)+\frac{1}{z+a}

Substituting c1 and c2 we get the integral surface:

2x(z+a)z2=2z+a+0.23+x(z+a)zz\frac{2x(z+a)}{z^2}=\frac{2}{z+a}+\frac{0.23+x(z+a)}{z}-z






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS