x(z+2a)dx=xz+2yz+2aydy=z(z+a)dz
xdx=z(z+a)(z+2a)dz
∫xdx=∫zdz+∫z(z+a)adz
z(z+a)1=zA+z+aB
A(z+a)+Bz=a
A+B=0
A=1
B=-1
z(z+a)1=z1−z+a1
log(x)=log(z)−alog(z+a)+log(c1)=log(z+ac1−z2)
c1=z2x(z+a)
xz+2yz+2aydy=z(z+a)dz
c1−z3+2y(z+1)2(z+a)dy=z(z+a)dz
dzdy−zy=(z+a)2c1−z2
y=uv
y′=u′v+v′y
v′−v/z=0
v=z
dzdy=(z+a)2c1−z2
c1=log(z+a)+z+a1+c2−z
c2=zy−z2x(z+a)−log(z+a)+z+a1
For y=0.23+x(r+a)
c2=z0.23+x(z+a)−z2x(z+a)−log(z+a)+z+a1
Substituting c1 and c2 we get the integral surface:
z22x(z+a)=z+a2+z0.23+x(z+a)−z
Comments