(D2−5D+6)y=cos3x The homogeneous differential equation
(D2−5D+6)y=0 The characteristic equation
r2−5r+6=0
r1=2,r2=3 The general solution of the homogenepus equation is
yh=c1e2x+c2e3x Find the particular solution of the nonhomogeneous differential equation
yp=Acos3x+Bsin3x
yp′=−3Asin3x+3Bcos3x
yp′′=−9Acos3x−9Bsin3x Substitute
−9Acos3x−9Bsin3x+15Asin3x−15Bcos3x
+6Acos3x+6Bsin3x=cos3x
−3A−15B=115A−3B=0=>B=5A
−78A=1=>A=−781,B=−785 Then
yp=−781cos3x−785sin3x The general solution of the given nonhomogenepus equation is
y=c1e2x+c2e3x−781cos3x−785sin3x
Comments