Question #216104
(2y^3-x^3)dx+3x^2ydy=0
1
Expert's answer
2021-07-12T13:24:23-0400

Given (2y3x3)dx+3x2ydy=0(2y^3-x^3)dx+3x^2ydy=0

dydx=(2y3x3)3x2y=(x32y3)3x2y\frac{dy}{dx} = -\frac{(2y^3-x^3)}{3x^2y} = \frac{(x^3-2y^3)}{3x^2y}


Let y = vx, then dydx=v+xdvdx\frac{dy}{dx } = v+x\frac{dv}{dx}


v+xdvdx=(x32v3x3)3x3v=12v33vv+x\frac{dv}{dx} = \frac{(x^3-2v^3x^3)}{3x^3v} = \frac{1-2v^3}{3v}


xdvdx=12v33vv=12v33v23vx\frac{dv}{dx} = \frac{1-2v^3}{3v}-v = \frac{1-2v^3-3v^2}{3v}


3vdv12v33v2=dxx\frac{3vdv}{1-2v^3-3v^2} = \frac{dx}{x}



Integrating both sides,

3vdv12v33v2=dxx\int \frac{3vdv}{1-2v^3-3v^2} =\int \frac{dx}{x}


Doing partial fractions,

3v12v33v2=19(v+1)13(v+1)229(2v1)\frac{3v}{1-2v^3-3v^2} = \frac{1}{9(v+1)} -\frac{1}{3(v+1)^2}-\frac{2}{9(2v-1)}


Now integrate both sides,

19(v+1)13(v+1)229(2v1)dv=dxx\int \frac{1}{9(v+1)} -\frac{1}{3(v+1)^2}-\frac{2}{9(2v-1)} dv =\int\frac{dx}{x}


13lnv+1+1v+113ln2v1=lnx+lnC\frac{1}{3}ln|v+1| +\frac{1}{v+1} -\frac{1}{3}ln|2v-1| = ln|x| + ln|C|


13lnv+12v1+1v+1=lnCx\frac{1}{3}ln|\frac{v+1}{2v-1}| +\frac{1}{v+1} = ln|Cx|


Simply putting v=yxv = \frac{y}{x}


13lny+x2yx+xy+x=lnCx\frac{1}{3}ln|\frac{y+x}{2y-x}| +\frac{x}{y+x} = ln|Cx|



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS