Given (2y3−x3)dx+3x2ydy=0
dxdy=−3x2y(2y3−x3)=3x2y(x3−2y3)
Let y = vx, then dxdy=v+xdxdv
v+xdxdv=3x3v(x3−2v3x3)=3v1−2v3
xdxdv=3v1−2v3−v=3v1−2v3−3v2
1−2v3−3v23vdv=xdx
Integrating both sides,
∫1−2v3−3v23vdv=∫xdx
Doing partial fractions,
1−2v3−3v23v=9(v+1)1−3(v+1)21−9(2v−1)2
Now integrate both sides,
∫9(v+1)1−3(v+1)21−9(2v−1)2dv=∫xdx
31ln∣v+1∣+v+11−31ln∣2v−1∣=ln∣x∣+ln∣C∣
31ln∣2v−1v+1∣+v+11=ln∣Cx∣
Simply putting v=xy
31ln∣2y−xy+x∣+y+xx=ln∣Cx∣
Comments