The general solution
y(x)=c1cosλx+c2sinλxy′(x)=−c1λsinλx+c2λcosλx
Determining the constants
0=y(0)=c10=y′(1)=−c1λsinλ+c2λcosλc1=0=c2λcosλ=c2=0⟹c2λcosλ=0cosλ=0cosx=0 if x=2(2n−1)πϕ(x)=knsin2(2n−1)πx
Normalizing
1=∫01r(x)ϕn2(x)dx=kn2∫01sin22(2n−1)πxdx1=kn2(0.5)kn=2ϕ(x)=2sin2(2n−1)πx
The general solution
L(y)=μr(x)y+f(x)y(x)=∑n=1+∞λn−μcnϕn(x)y(x)=∑n=1+∞(2n−1)2π2/4−2cn2sin2(2n−1)πxcn=∫01f(x)ϕn(x)dx=2∫01xsin2(2n−1)πxdx=−(2n−1)2π242(−1)ny(x)=∑n=1+∞(n−0.5)2π2((n−0.5)2)π2−2(−1)n+1sin(n−0.5)πx
Comments