Question #215755

Solve the given problem by means of an eigenfunction expansion.

y"+2y= −x, y(0)=0, y'(1)=0


1
Expert's answer
2021-07-13T12:55:10-0400

The general solution

y(x)=c1cosλx+c2sinλxy(x)=c1λsinλx+c2λcosλxy(x)=c_1 \cos \sqrt{\lambda}x+c_2\sin \sqrt{\lambda}x\\ y'(x)=-c_1\sqrt{\lambda} \sin \sqrt{\lambda}x+c_2\sqrt{\lambda} \cos \sqrt{\lambda}x\\

Determining the constants

0=y(0)=c10=y(1)=c1λsinλ+c2λcosλc1=0=c2λcosλ=c20    c2λcosλ=0cosλ=0cosx=0  if  x=(2n1)π2ϕ(x)=knsin(2n1)πx20=y(0)=c_1\\ 0=y'(1)= -c_1\sqrt{\lambda} \sin \sqrt{\lambda}+c_2\sqrt{\lambda} \cos \sqrt{\lambda}\\ c_1=0\\ = c_2\sqrt{\lambda} \cos \sqrt{\lambda}\\ =c_2 \not= 0 \implies c_2\sqrt{\lambda} \cos \sqrt{\lambda}=0\\ \cos \sqrt{\lambda}=0\\ cos x =0 \space \space if \space \space x= \frac{(2n-1) \pi}{2}\\ \phi(x)=k_n sin \frac{(2n-1) \pi x}{2}

Normalizing

1=01r(x)ϕn2(x)dx=kn201sin2(2n1)πx2dx1=kn2(0.5)kn=2ϕ(x)=2sin(2n1)πx21= \int _0^1r(x) \phi_n^2(x)dx \\ =k_n^2 \int _0^1 sin^2 \frac{(2n-1) \pi x}{2} dx\\ 1=k_n^2(0.5)\\ k_n=\sqrt{2}\\ \phi(x)=\sqrt{2} sin \frac{(2n-1) \pi x}{2}\\

The general solution

L(y)=μr(x)y+f(x)y(x)=n=1+cnλnμϕn(x)y(x)=n=1+cn(2n1)2π2/422sin(2n1)πx2cn=01f(x)ϕn(x)dx=201xsin(2n1)πx2dx=42(1)n(2n1)2π2y(x)=n=1+(1)n+1(n0.5)2π2((n0.5)2)π22sin(n0.5)πxL(y)= \mu r (x)y+f(x)\\ y(x)= \sum _{n=1}^{+\infin} \frac{c_n}{\lambda_n - \mu}\phi_n(x)\\ y(x)= \sum _{n=1}^{+\infin} \frac{c_n}{ (2n-1)^2 \pi^2 /4 - 2}\sqrt{2} sin \frac{(2n-1) \pi x}{2}\\ c_n = \int_0^1 f(x)\phi_n(x)dx = \sqrt{2} \int_0^1 x sin \frac{(2n-1) \pi x}{2}dx = - \frac{4 \sqrt{2}(-1)^n}{(2n-1)^2 \pi^2}\\ y(x)= \sum _{n=1}^{+\infin} \frac{(-1)^{n+1}}{ (n-0.5)^2 \pi^2 ((n-0.5)^2)\pi^2-2}sin (n-0.5)\pi x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS