Question #215691

The velocity distribution in a two dimensional steady flow field is xy plan is v=(Ax-B)i+(C-Ay)j,A=2s-1,B=5ms-1,C=3ms-1. The coordinates are measured in meters and body force distributing is gx=-gk.Does the velocity field represent an incompressible fluid?Find the stagnation point of the flow field. Obtain expression for the pressures gradient in the flow field. Evaluate the difference at(x,y)=(1,3) and origin if density is 1.2kg/m3

1
Expert's answer
2021-07-13T05:16:33-0400

Solution;

a) Incompressible flow

dudx+dvdy=0\frac{du}{dx}+\frac{dv}{dy}=0

Given:

u=Ax-B

dudx\frac{du}{dx}=A

v=C-Ay

dvdy\frac{dv}{dy} =-A

dudx+dvdx\frac{du}{dx}+\frac{dv}{dx} =A+-A=0

Answer

The velocity field represents an incompressible flow.

b) Stagnation point of the flow field;

At stagnation point ;

V\overrightarrow{V} =0

Since

V\overrightarrow{V} =(Ax-B)i+(C-Ay)j

And A=2,B=5 and C=3

u=2x-5=0

x=5/2

v=3-2y

y=3/2

Answer

Stagnation point

(52,32)(\frac52,\frac32)

c) Expression for the pressure gradient.

From Euler's equation of ideal flow,

Assuming a steady flow;

ρ\rho gx-∆P=ρ\rho [udvdx+vdvdyu\frac{dv}{dx}+v\frac{dv}{dy} ]

From the given data

ρgxkP=ρ[(AxB)Ai+(CAy)Aj]-\rho g_xk-∆P=\rho[(Ax-B)Ai+(C-Ay)-Aj]

Replace the values of A B and C

ρgxkP=ρ[(4x10)i+(4y6)j]-\rho g_xk-∆P=\rho[(4x-10)i+(4y-6)j]

Which can be rewritten as;

P=ρ[(4x10)i+(4y6)j+gxk]∆P=-\rho[(4x-10)i+(4y-6)j+g_xk]

d) Evaluate the difference at (1,3) and Origin(0,0) if ρ=1.2kg/m3\rho=1.2kg/m^3

P1,3-P0,0=ρ(01(4x10)dx+03(4y6)dy+00gdz)-\rho(\int_0^1(4x-10)dx+\int_0^3(4y-6)dy+\int_0^0gdz)

P(1,3)-P(0,0)=ρ[(2x210x)01+(2y26y)03]-\rho[(2x^2-10x)|_0^1+(2y^2-6y)|_0^3]

P(1,3)-P(0,0)=-1.2(-8)=9.6N/m2

Answer

9.6N/m2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS