Given Partial differential equation that is -
= 4 u x x + 5 u x y + u y y + u x + u y = 0 =4u_{xx}+5u_{xy}+u_{yy}+u_{x}+u_{y}=0 = 4 u xx + 5 u x y + u yy + u x + u y = 0
Now comparing this equation with the general form we get , which is -
A u x x + B u x y + C u y y + D u x + E u y + F u = G Au_{xx}+Bu_{xy}+Cu_{yy}+Du_{x}+Eu_{y}+Fu=G A u xx + B u x y + C u yy + D u x + E u y + F u = G
Now comparing both the equation we get ,
A = 4 , B = 5 , C = 1 , D = 1 , E = 1 , F = 0 A=4,B=5,C=1,D=1,E=1,F=0 A = 4 , B = 5 , C = 1 , D = 1 , E = 1 , F = 0
now taking out discriminant , which is equal to -
B 2 − 4 A C = 25 − 4 × 4 × 1 = 9 > 0 B^{2}-4AC=25-4\times4\times1=9>0 B 2 − 4 A C = 25 − 4 × 4 × 1 = 9 > 0
so the given characteristics curve will be hyperbolic .
Corresponding characteristics curve equation will be given as -
d y d x = − ξ x ξ y \dfrac{dy}{dx}=\dfrac{-\xi_{x}}{\xi_{y}} d x d y = ξ y − ξ x = − ( − B + B 2 − 4 A C 2 A ) = − ( − 5 + 9 ) 8 = − 1 2 =-(\dfrac{-B+\sqrt{B^{2}-4AC}}{2A})=-\dfrac{(-5+9)}{8}=-\dfrac{1}{2} = − ( 2 A − B + B 2 − 4 A C ) = − 8 ( − 5 + 9 ) = − 2 1
d y d x = − η x η y \dfrac{dy}{dx}=\dfrac{-\eta_{x}}{\eta_{y}} d x d y = η y − η x = − ( − B − B 2 − 4 A C 2 A ) = 14 8 = 7 4 =-(\dfrac{-B-\sqrt{B^{2}-4AC}}{2A})=\dfrac{14}{8}=\dfrac{7}{4} = − ( 2 A − B − B 2 − 4 A C ) = 8 14 = 4 7
To find ξ {\xi} ξ and η {\eta} η , we solve the above two equations for y y y , we get -
y = − 1 2 x + c 1 y=\dfrac{-1}{2}x+c_{1} y = 2 − 1 x + c 1 and y = 7 4 x + c 2 y=\dfrac{7}{4}x+c_{2} y = 4 7 x + c 2
Which give the value of two constants c 1 a n d c 2 c_{1}\ and \ c_{2} c 1 an d c 2 as given below-
c 1 = y + 1 x 2 c_{1}=y+\dfrac{1x}{2} c 1 = y + 2 1 x and c 2 = y − 7 x 4 c_{2}=y-\dfrac{7x}{4} c 2 = y − 4 7 x
∴ ξ ( x , y ) = y + x 2 = c 1 {\therefore} {\xi}(x,y)=y+\dfrac{x}{2}=c_{1} ∴ ξ ( x , y ) = y + 2 x = c 1 and η ( x , y ) = y − 7 x 4 = c 2 \eta({x,y})=y-\dfrac{7x}{4}=c_{2} η ( x , y ) = y − 4 7 x = c 2
These are equations of straight lines known as characteristics lines for given hyperbolic equation .
Comments