Solution
(1-x2)y"-2xy'+l(l+1)y=0
Can be rewritten as;
y"-x2y"-2xy'+l(l+1)y=0
Solve using power series;
By definition;
y=n=0∑∞ anxn
And;
y'=n=1∑∞ nanxn-1
y"=n=2∑∞ n(n-1)anxn-2
Replace the values in the equation to obtain;
n=2∑∞ n(n-1)anxn-2-x2n=2∑∞ n(n-1)anxn-2-2xn=1∑∞ nanxn-1+l(l+1)n=0∑∞ anxn
Make all powers of X equal
n=0∑∞ (n+2)(n+1)an+2xn+n=2∑∞ -n(n-1)anxn+n=1∑∞ -2nanxn+n=0∑∞ l(l+1)anxn
n=0,1,2,3...
When;
n=0
((2.1)a2+l(l+1))x0=0
n=1
3.2a3-2a1+l(l+1)x1=0
n=≥2
There is a general trend of
((n+2)(n+1)an+2-n(n-1)an-2nan+l(l+1)an))xn=0
All the coefficients of x must equal to zero, therefore;
Using
n=0;a2=2.1−l(l+1)a0
n=1;a3=3.2−(l2+l−2)a1
n≥ 2
an+2=(n+2)(n+1)(n+l+1)(n−l)an
This is the recurrence relation.
Using it ;
n=2,
a4=4.3(l+3)(2−l)a2 =4!(l+3)(l+1)(l)(l−2)a0
n=3
a5=5.4(l+4)(3−l)a3 =5!(l+4)(l+2)(l−1)(l)(l−3)a1
And so on
A pattern for even number is ;
a2n=(2n)!(−1)n(l+2n−1)(l+2n−3)...(l+1)l(l−2)...(l−(2n−2))
A pattern for the odd numbers is;
a2n+1=(2n+1)!(−1)n(l+2n)(l+2n−2)...(l+2)(l−1)(l−3)...(l−(2n−1))a1
Since y=n=0∑∞ anxn=a0n=0∑∞ (2n)!(−1)n(l+2n−1)(l+2n−3)...(l+1)l(l−2)..(l−(2n−2))x2n+a1n=0∑∞(2n+1)!((−1)n(l+2n)(l+2n−2)..(l+2)(l−1)(l−3)...(l−(2n−1))x2n+1
Comments