Question #215331

Solve the following lengendre differential equation.

(1-x2)y"-2xy'+l(l+1)y=0


1
Expert's answer
2021-07-12T16:03:58-0400

Solution

(1-x2)y"-2xy'+l(l+1)y=0

Can be rewritten as;

y"-x2y"-2xy'+l(l+1)y=0

Solve using power series;

By definition;

y=n=0\displaystyle\sum_{n=0}^ ∞ anxn

And;

y'=n=1\displaystyle\sum_{n=1}^ ∞ nanxn-1

y"=n=2\displaystyle\sum_{n=2}^ ∞ n(n-1)anxn-2

Replace the values in the equation to obtain;

n=2\displaystyle\sum_{n=2}^∞ n(n-1)anxn-2-x2n=2\displaystyle\sum_{n=2}^∞ n(n-1)anxn-2-2xn=1\displaystyle\sum_{n=1}^∞ nanxn-1+l(l+1)n=0\displaystyle\sum_{n=0}^∞ anxn

Make all powers of X equal

n=0\displaystyle\sum_{n=0}^∞ (n+2)(n+1)an+2xn+n=2\displaystyle\sum_{n=2}^∞ -n(n-1)anxn+n=1\displaystyle\sum_{n=1}^∞ -2nanxn+n=0\displaystyle\sum_{n=0}^∞ l(l+1)anxn

n=0,1,2,3...

When;

n=0

((2.1)a2+l(l+1))x0=0

n=1

3.2a3-2a1+l(l+1)x1=0

n=2=\geq2

There is a general trend of

((n+2)(n+1)an+2-n(n-1)an-2nan+l(l+1)an))xn=0

All the coefficients of x must equal to zero, therefore;

Using

n=0;a2=l(l+1)a02.1\frac{-l(l+1)a_0}{2.1}

n=1;a3=(l2+l2)a13.2\frac{-(l^2+l-2)a_1}{3.2}

n\geq 2

an+2=(n+l+1)(nl)an(n+2)(n+1)\frac{(n+l+1)(n-l)a_n}{(n+2)(n+1)}

This is the recurrence relation.

Using it ;

n=2,

a4=(l+3)(2l)a24.3\frac{(l+3)(2-l)a_2}{4.3} =(l+3)(l+1)(l)(l2)a04!\frac{(l+3)(l+1)(l)(l-2)a_0}{4!}

n=3

a5=(l+4)(3l)a35.4\frac{(l+4)(3-l)a_3}{5.4} =(l+4)(l+2)(l1)(l)(l3)a15!\frac{(l+4)(l+2)(l-1)(l)(l-3)a_1}{5!}

And so on

A pattern for even number is ;

a2n=(1)n(l+2n1)(l+2n3)...(l+1)l(l2)...(l(2n2))(2n)!a_{2n}=\frac{(-1)^n(l+2n-1)(l+2n-3)...(l+1)l(l-2)...(l-(2n-2))}{(2n)!}

A pattern for the odd numbers is;

a2n+1=(1)n(l+2n)(l+2n2)...(l+2)(l1)(l3)...(l(2n1))a1(2n+1)!a_{2n+1}=\frac{(-1)^n(l+2n)(l+2n-2)...(l+2)(l-1)(l-3)...(l-(2n-1))a_1}{(2_{n+1})!}

Since y=n=0\displaystyle\sum_{n=0}^∞ anxn=a0n=0\displaystyle\sum_{n=0}^∞ (1)n(l+2n1)(l+2n3)...(l+1)l(l2)..(l(2n2))(2n)!x2n+a1n=0((1)n(l+2n)(l+2n2)..(l+2)(l1)(l3)...(l(2n1))(2n+1)!x2n+1\frac{(-1)^n(l+2n-1)(l+2n-3)...(l+1)l(l-2)..(l-(2n-2))}{(2n)!}x^{2n}+a_1\displaystyle\sum_{n=0}^∞\frac{((-1)^n(l+2n)(l+2n-2)..(l+2)(l-1)(l-3)...(l-(2n-1))}{(2n+1)!}x^{2n+1}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS