Question #215320

Using power series method,solve the following differential equation

(x3+3)y"+4xy'+y=0


1
Expert's answer
2022-02-02T15:13:54-0500

Let y=n=0anxny = \sum_{n=0}^{\infty}a_nx^n

Then y=n=1nanxn1y' = \sum_{n=1}^{\infty}na_nx^{n-1}

And y=n=2n(n1)anxn2y'' = \sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}


Then we have that

(x3+3)y=n=2n(n1)anxn+1+n=23n(n1)anxn2...()(x^3+3)y'' = \sum_{n=2}^{\infty}n(n-1)a_nx^{n+1} + \sum_{n=2}^{\infty}3n(n-1)a_nx^{n-2} ... (*)


Also

4xy=n=14nanxn...()4xy' = \sum_{n=1}^{\infty}4na_nx^{n} ... (**)


Adding up and simplifying y, (*) and (**), we have

n=3(n1)(n2)an1xn+n=03(n+1)(n+2)an+2xn\sum_{n=3}^{\infty}(n-1)(n-2)a_{n-1}x^{n} + \sum_{n=0}^{\infty}3(n+1)(n+2)a_{n+2}x^{n}

+a0+n=1(4n+1)anxn=0a_0 + \sum_{n=1}^{\infty}(4n+1)a_nx^n = 0


Simplifying further, we have

n=3[(n1)(n2)an1+3(n+1)(n+2)an+2+(4n+1)an]xn\sum_{n=3}^{\infty} \big[(n-1)(n-2)a_{n-1} +3(n+1)(n+2)a_{n+2} +(4n+1)a_n \big]x_n

+6a2+18a3x+36a4x2+a0+5a1x+9a2x2=0+ 6a_2 + 18a_3x+36a_4x^2+a_0+5a_1x+9a_2x^2 = 0


Considering

n=3[(n1)(n2)an1+3(n+1)(n+2)an+2+(4n+1)an]xn\sum_{n=3}^{\infty} \big[(n-1)(n-2)a_{n-1} +3(n+1)(n+2)a_{n+2} +(4n+1)a_n \big]x_n

when n1,n \geq 1, we have that


an+2=(1n)(n2)an1(4n+1)an3(n+1)(n+2)a_{n+2} = \dfrac{(1-n)(n-2)a_{n-1} - (4n+1)a_n}{3(n+1)(n+2)}


So the solution to the differential equation is

y=a0+a1x+a2x2y = a_0 + a_1x +a_2x^2 +n=1[(1n)(n2)an1(4n+1)an3(n+1)(n+2)]xn+2+ \sum_{n=1}^{\infty} \big[ \dfrac{(1-n)(n-2)a_{n-1} - (4n+1)a_n}{3(n+1)(n+2)} \big]x^{n+2}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS