Let y=∑n=0∞anxn
Then y′=∑n=1∞nanxn−1
And y′′=∑n=2∞n(n−1)anxn−2
Then we have that
(x3+3)y′′=∑n=2∞n(n−1)anxn+1+∑n=2∞3n(n−1)anxn−2...(∗)
Also
4xy′=∑n=1∞4nanxn...(∗∗)
Adding up and simplifying y, (*) and (**), we have
∑n=3∞(n−1)(n−2)an−1xn+∑n=0∞3(n+1)(n+2)an+2xn
+a0+∑n=1∞(4n+1)anxn=0
Simplifying further, we have
∑n=3∞[(n−1)(n−2)an−1+3(n+1)(n+2)an+2+(4n+1)an]xn
+6a2+18a3x+36a4x2+a0+5a1x+9a2x2=0
Considering
∑n=3∞[(n−1)(n−2)an−1+3(n+1)(n+2)an+2+(4n+1)an]xn
when n≥1, we have that
an+2=3(n+1)(n+2)(1−n)(n−2)an−1−(4n+1)an
So the solution to the differential equation is
y=a0+a1x+a2x2 +∑n=1∞[3(n+1)(n+2)(1−n)(n−2)an−1−(4n+1)an]xn+2
Comments