Question #215123

find the relation between D and Δ of following differential equation 4(2x+1)^2 d^2y/dy^2 -4(2x+1)dy/dx + 3y =ln(2x+1))


1
Expert's answer
2021-07-11T16:25:33-0400

4(2x+1)2y"4(2x+1)y+3y=ln(2x+1))y(x)=f(ln(2x+1))y(x)=2f(ln(2x+1))2x+1y(x)=4f(ln(2x+1))(2x+1)24f(ln(2x+1))(2x+1)216f(ln(2x+1))16f(ln(2x+1))8f(ln(2x+1))+3f(ln(2x+1))=ln(2x+1)16f(ln(2x+1))24f(ln(2x+1))+3f(ln(2x+1))=ln(2x+1)16f(t)24f(t)+3f(t)=tf(t)=c1e364t+c2e3+64tf(ln(2x+1))=c1e364ln(2x+1)+c2e3+64ln(2x+1)=c1(2x+1)364+c2(2x+1)3+6416f(t)24f(t)+3f(t)=tf(t)=At+Bf(t)=A,f"(t)=0    24A+3B+3At=t    3A=1,A=13&3B=24A,B=83    f(t)=t+83,f(ln(2x+1))=ln(2x+1)+83    y(x)=c1(2x+1)364+c2(2x+1)3+64+ln(2x+1)+83\displaystyle 4(2x+1)^2y" -4(2x+1)y' + 3y = \ln(2x+1))\\ y(x) = f(\ln(2x + 1))\\ y'(x) = 2\frac{f'(\ln(2x + 1))}{2x + 1}\\ y''(x) = \frac{4f''(\ln(2x + 1))}{(2x + 1)^2} - \frac{4f'(\ln(2x + 1))}{(2x + 1)^2}\\ 16f''(\ln(2x + 1)) - 16f'(\ln(2x + 1)) - 8f'(\ln(2x + 1)) + 3f(\ln(2x + 1)) = \ln(2x + 1)\\ 16f''(\ln(2x + 1)) - 24f'(\ln(2x + 1)) + 3f(\ln(2x + 1)) = \ln(2x + 1)\\ 16f''(t) - 24f'(t) + 3f(t) = t\\ f(t) = c_1e^{\frac{3 - \sqrt{6}}{4}t} + c_2 e^{\frac{3 + \sqrt{6}}{4}t}\\ \begin{aligned} f(\ln(2x + 1)) &= c_1e^{\frac{3 - \sqrt{6}}{4}\ln(2x + 1)} + c_2 e^{\frac{3 + \sqrt{6}}{4}\ln(2x + 1)} \\&= c_1 (2x + 1)^{\frac{3 - \sqrt{6}}{4}} + c_2 (2x + 1)^{\frac{3 + \sqrt{6}}{4}} \end{aligned} \\ 16f''(t) - 24f'(t) + 3f(t) = t\\ f(t) = At + B\\ f'(t) = A, f"(t) = 0\\ \implies -24A + 3B + 3At = t\\ \implies 3A = 1, A = \frac{1}{3} \,\,\&\,\, 3B = 24A, B = \frac{8}{3}\\ \implies f(t) = \frac{t + 8}{3}, \\ f(\ln(2x + 1)) = \frac{\ln(2x + 1) + 8}{3}\\ \implies y(x) = c_1 (2x + 1)^{\frac{3 - \sqrt{6}}{4}} + c_2 (2x + 1)^{\frac{3 + \sqrt{6}}{4}} + \frac{\ln(2x + 1) + 8}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS