(2y3−x3)dx+3x2ydy=0
dydx=2y3−x3−3x2y=x22y2−yx−3
xy=v
y=vx
dxdy=v+xdxdv=2v2−v1−3=2v3−1−3v
xdxdv=2v3−1−3v−v=2v3−1−2v−2v4
∫−2v−2v42v3−1dv=∫xdx
−2v−2v4=−v(2v3−1)+3)
−2v−2v4=t
(−2−8v3)dv=dt
−4(2v3−1+3)dv=dt
−4∫tdt−4∫3dv=∫xdx
-4log(t)-12v=log(x)+log(c)
−4log(xct)−12v=−4log(xc−2v(1+v3))−12v=−4log(xc−2xy(1+(xy)3)−12xy=0
x2c−2y(1+(xy)3)=e−3xy
Comments