Question #215112

Solve the equation (Bernoulli Differential Equation)


(2y^3 - x^3) dx + 3x^2y dx = 0


1
Expert's answer
2021-07-12T16:40:44-0400

(2y3x3)dx+3x2ydy=0(2y^3 - x^3) dx + 3x^2y dy = 0

dxdy=3x2y2y3x3=32y2x2xy\frac{dx}{dy}=\frac{-3x^2y}{2y^3-x^3}=\frac{-3}{\frac{2y^2}{x^2}-\frac{x}{y}}

yx=v\frac{y}{x}=v

y=vx

dydx=v+xdvdx=32v21v=3v2v31\frac{dy}{dx}=v+x\frac{dv}{dx}=\frac{-3}{2v^2-\frac{1}{v}}=\frac{-3v}{2v^3-1}

xdvdx=3v2v31v=2v2v42v31x\frac{dv}{dx}=\frac{-3v}{2v^3-1}-v=\frac{-2v-2v^4}{2v^3-1}

2v312v2v4dv=dxx\int\frac{2v^3-1}{-2v-2v^4}dv=\int\frac{dx}{x}

2v2v4=v(2v31)+3)-2v-2v^4=-v(2v^3-1)+3)

2v2v4=t-2v-2v^4=t

(28v3)dv=dt(-2-8v^3)dv=dt

4(2v31+3)dv=dt-4(2v^3-1+3)dv=dt

4dtt43dv=dxx-4\int\frac{dt}{t}-4\int3dv=\int\frac{dx}{x}

-4log(t)-12v=log(x)+log(c)

4log(txc)12v=4log(2v(1+v3)xc)12v=4log(2yx(1+(yx)3xc)12yx=0-4log(\frac{t}{xc})-12v=-4log(\frac{-2v(1+v^3)}{xc})-12v=-4log(\frac{-2\frac{y}{x}(1+(\frac{y}{x})^3}{xc})-12\frac{y}{x}=0

2y(1+(yx)3)x2c=e3yx\frac{-2y(1+(\frac{y}{x})^3)}{x^2c}=e^{-3\frac{y}{x}}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS