Question #214932

ut =9uxx

u(0,t)=u(2π,t) 0, t > 0

u(x,0) = {x , 0 < x < π

{- 3x, π < x < 2π


1
Expert's answer
2021-07-11T17:11:13-0400

GivenGiven -


ut=9uxxu_{t}=9u_{xx}


so we can write this equation as =


=ut=92uu2.....................................1)=\dfrac{\partial u}{\partial t}=9\dfrac{\partial^{2} u}{\partial u^ {2}}.....................................1)


== Boundry conditionsBoundry \ conditions


u(0,t)=u(2π,t)=0,t>0u(0,t)=u(2{\pi},t)=0,t>0


Since u(0,u(0, t)t) and u(2π,t)u(2{\pi},t) is given , so we will apply fourier sine transfrom with


= Initial condition=\ Initial\ condition


u(x,0)= x, 0<x<πu(x,0)=\ {x},\ 0<x<{\pi}


 3x\ -{3x} ,π<x<2π,{-\pi}<x<2{\pi}


== utsin2πx2πdx=92uu2sin2πx2πdx\int \dfrac{\partial u}{\partial t}sin\dfrac{2{\pi}x}{2{\pi}}dx=\int 9\dfrac{\partial^{2} u}{\partial u^ {2}}sin\dfrac{2{\pi}x}{2{\pi}}dx


=ddt02πusinxdx==\dfrac{d}{dt}\int_{0}^{2{\pi}}usinxdx= 902π2uu2sinxdx9\int_{0}^{2{\pi}}\dfrac{\partial^{2} u}{\partial u^ {2}}sin{x}dx


=dus^(s,t)dt=9s[u(x,t)cossx02π+9s02πusinsxdx]=\dfrac{d\hat{u_s}(s,t)}{dt}=-9s[u(x,t)cossx|_{0}^{2{\pi}}+9s\int_{0}^{2{\pi}}usinsxdx]


== dus^(s,t)dt=9s[u(2π,t)coss2πu(0,t)]9s202πu(x,t)sinsxdx\dfrac{d\hat{u_s}(s,t)}{dt}=9s[u(2{\pi},t)coss2{\pi}-u_{(0,t)}]-9s^{2}\int_{0}^{2{\pi}}u(x,t)sinsxdx



\because u(2π,t)=0=u(0,t)u({2{\pi},t})=0=u_{(0,t)}



== dus^(s,t)dt=9s2us^(s,t).............................................4)\dfrac{d\hat{u_s}(s,t)}{dt}=-9s^{2}\hat{u_s}(s,t).............................................4)



where us^(s,t)=02πu(x,t)sinsxdx\hat{u_s}(s,t)=\int_{0}^{2\pi}u(x,t)sinsxdx


Now solving equation 4) we get ,



us^(s,t)=9Ces2t..........................................5),where C is an arbitrary constant\hat{u_s}(s,t)=9Ce^{-s^{2}t}..........................................5) , where \ C\ is\ an\ arbitrary\ constant




Put t=0 in equation 5) , we get ,


c=us^(s,0)=02πu(x,0)sinsxdxc=\hat{u_s}(s,0)=\int_{0}^{2{\pi}}u(x,0)sinsxdx


As interval 0 \ to\ 2{\pi}\ is given in interval , so we have to also break the above integeral , so the integeral can be break like this .



== us^(s,0)=02πu(x,0)sinsxdx=0πxsinsxdx3π2πxsinsxdx\hat{u_s}(s,0)=\int_{0}^{2{\pi}}u(x,0)sinsxdx=\int_{0}^{{\pi}}xsinsxdx-3\int_{\pi}^{2{\pi}}xsinsxdx



=π(1)s+1s3[πs(1)s2πs]s2...................6)=\dfrac{\pi(-1)^{s+1}}{s}-3\dfrac{[{\pi}s(-1)^{s}-2{\pi}s]}{s^{2}}...................6)



From 5) and 6) , we have -


us^(s,t)=\hat{u_s}(s,t)=[π(1)s+1s3[πs(1)s2πs]s2]es2t[\dfrac{\pi(-1)^{s+1}}{s}-3\dfrac{[{\pi}s(-1)^{s}-2{\pi}s]}{s^{2}}]e^{-s^{2}t}



Now taking inverse fourier sin trasnform , we get -


u(x,t)=18πΣs=01[π(1)s+1s3[πs(1)s2πs]s2]es2tsinsxu(x,t)=\dfrac{18}{\pi}\Sigma_{s=0}^{1}[\dfrac{\pi(-1)^{s+1}}{s}-3\dfrac{[{\pi}s(-1)^{s}-2{\pi}s]}{s^{2}}]e^{-s^{2}t}sinsx





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS