Given−
ut=9uxx
so we can write this equation as =
=∂t∂u=9∂u2∂2u.....................................1)
= Boundry conditions
u(0,t)=u(2π,t)=0,t>0
Since u(0, t) and u(2π,t) is given , so we will apply fourier sine transfrom with
= Initial condition
u(x,0)= x, 0<x<π
−3x ,−π<x<2π
= ∫∂t∂usin2π2πxdx=∫9∂u2∂2usin2π2πxdx
=dtd∫02πusinxdx= 9∫02π∂u2∂2usinxdx
=dtdus^(s,t)=−9s[u(x,t)cossx∣02π+9s∫02πusinsxdx]
= dtdus^(s,t)=9s[u(2π,t)coss2π−u(0,t)]−9s2∫02πu(x,t)sinsxdx
∵ u(2π,t)=0=u(0,t)
= dtdus^(s,t)=−9s2us^(s,t).............................................4)
where us^(s,t)=∫02πu(x,t)sinsxdx
Now solving equation 4) we get ,
us^(s,t)=9Ce−s2t..........................................5),where C is an arbitrary constant
Put t=0 in equation 5) , we get ,
c=us^(s,0)=∫02πu(x,0)sinsxdx
As interval 0 \ to\ 2{\pi}\ is given in interval , so we have to also break the above integeral , so the integeral can be break like this .
= us^(s,0)=∫02πu(x,0)sinsxdx=∫0πxsinsxdx−3∫π2πxsinsxdx
=sπ(−1)s+1−3s2[πs(−1)s−2πs]...................6)
From 5) and 6) , we have -
us^(s,t)=[sπ(−1)s+1−3s2[πs(−1)s−2πs]]e−s2t
Now taking inverse fourier sin trasnform , we get -
u(x,t)=π18Σs=01[sπ(−1)s+1−3s2[πs(−1)s−2πs]]e−s2tsinsx
Comments