x2dy2−6dxdy+9y=x2e3x Solve the correspondent homogeneous differential equation.
x2dy2−6dxdy+9y=0 The characteristic equation for this differential equation and its roots are
r2−6r+9=0
r1,2=3 The complementary solution is then
yh(x)=C1xe3x+C1e3x Find the particular solution of the non-homogeneous differential equation
yp(x)=x2(Ax2+Bx+C)e3x Then
yp′=e3x(3Ax4+3Bx3+3Cx2)
+e3x(4Ax3+3Bx2+2Cx)
yp′′=e3x(9Ax4+9Bx3+9Cx2)
+e3x(12Ax3+9Bx2+6Cx)
+e3x(12Ax3+9Bx2+6Cx)
+e3x(12Ax2+6Bx+2C) Substitute
e3x(9Ax4+9Bx3+9Cx2)
+e3x(24Ax3+18Bx2+12Cx)
+e3x(12Ax2+6Bx+2C)
−e3x(18Ax4+18Bx3+18Cx2)
−e3x(24Ax3+18Bx2+12Cx)
+e3x(9Ax4+9Bx3+9Cx2)
=x2e3x
x4:9A−18A+9A=0
x3:9B+24A−18B−24A+9B=0
x2:9C+18B+12A−18C−18B+9C=1
=>A=121
x1:12C+6B−12C=0=>B=0
x0:2C=0=>C=0
yp=121x4e3x The general solution of the given differential equation is
y(x)=C1xe3x+C1e3x+121x4e3x
Comments