Question #214231

Solve the following differential equation (3 marks)


d

2

y

dx2

− 6

dy

dx + 9y = x

2

e

3x


using the method of undetermined coefficients.


1
Expert's answer
2021-07-08T12:03:54-0400
dy2x26dydx+9y=x2e3x\dfrac{dy^2}{x^2}-6\dfrac{dy}{dx}+9y=x^2e^{3x}

Solve the correspondent homogeneous differential equation.


dy2x26dydx+9y=0\dfrac{dy^2}{x^2}-6\dfrac{dy}{dx}+9y=0

The characteristic equation for this differential equation and its roots are


r26r+9=0r^2-6r+9=0

r1,2=3r_{1,2}=3

The complementary solution is then


yh(x)=C1xe3x+C1e3xy_h(x)=C_1xe^{3x}+C_1e^{3x}

Find the particular solution of the non-homogeneous differential equation


yp(x)=x2(Ax2+Bx+C)e3xy_p(x)=x^2(Ax^2+Bx+C)e^{3x}

Then


yp=e3x(3Ax4+3Bx3+3Cx2)y_p'=e^{3x}(3Ax^4+3Bx^3+3Cx^2)

+e3x(4Ax3+3Bx2+2Cx)+e^{3x}(4Ax^3+3Bx^2+2Cx)



yp=e3x(9Ax4+9Bx3+9Cx2)y_p''=e^{3x}(9Ax^4+9Bx^3+9Cx^2)

+e3x(12Ax3+9Bx2+6Cx)+e^{3x}(12Ax^3+9Bx^2+6Cx)

+e3x(12Ax3+9Bx2+6Cx)+e^{3x}(12Ax^3+9Bx^2+6Cx)

+e3x(12Ax2+6Bx+2C)+e^{3x}(12Ax^2+6Bx+2C)

Substitute


e3x(9Ax4+9Bx3+9Cx2)e^{3x}(9Ax^4+9Bx^3+9Cx^2)

+e3x(24Ax3+18Bx2+12Cx)+e^{3x}(24Ax^3+18Bx^2+12Cx)

+e3x(12Ax2+6Bx+2C)+e^{3x}(12Ax^2+6Bx+2C)

e3x(18Ax4+18Bx3+18Cx2)-e^{3x}(18Ax^4+18Bx^3+18Cx^2)

e3x(24Ax3+18Bx2+12Cx)-e^{3x}(24Ax^3+18Bx^2+12Cx)

+e3x(9Ax4+9Bx3+9Cx2)+e^{3x}(9Ax^4+9Bx^3+9Cx^2)

=x2e3x=x^2e^{3x}

x4:9A18A+9A=0x^4: 9A-18A+9A=0


x3:9B+24A18B24A+9B=0x^3: 9B+24A-18B-24A+9B=0


x2:9C+18B+12A18C18B+9C=1x^2: 9C+18B+12A-18C-18B+9C=1


=>A=112=>A=\dfrac{1}{12}


x1:12C+6B12C=0=>B=0x^1: 12C+6B-12C=0=>B=0


x0:2C=0=>C=0x^0: 2C=0=>C=0



yp=112x4e3xy_p=\dfrac{1}{12}x^4e^{3x}

The general solution of the given differential equation is


y(x)=C1xe3x+C1e3x+112x4e3xy(x)=C_1xe^{3x}+C_1e^{3x}+\dfrac{1}{12}x^4e^{3x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS