Question #214230

Let x

α

y

β be an integrating factor of x(4ydx + 2xdy) + y

3

(3ydx + 5xdy) = 0. Find α, β and

the solution of given differential equation.


1
Expert's answer
2021-07-08T04:58:11-0400

Question

Let xα^\alphayβ^\beta be an integrating factor of x (4ydx+2xdy)+y3(3ydx+5xdy)=0. Find αandβ\alpha and \beta and solution of the given differential equation.

Solution.

The equation can be written as;

4xydx +2x2dy +3y4dx+5xy3dy=0

(4xy+3y4)dx+(2x2+5xy3)dy=0

Is an equation of the form ;

P(x,y)dx+Q(x,y)dy=0

dPdy\frac {dP}{dy}=4x+12y3

dQdx\frac {dQ}{dx} =4x+5y3

dPdydQdx\frac {dP}{dy}\not = \frac {dQ}{dx} ;the equation is not exact.

We multiply the equation with the interesting factor for it to be exact.

xα^\alphayβ^\beta (4xy+3y4)dx+xαyβ^\alpha y^\beta(2x2+5xy3)dy=0

(4x1+αy1+β+3xαy4+β^{1+\alpha}y^{1+\beta}+3x^\alpha y^{4+\beta} )dx +(2x2+αyβ+5x1+αy3+β)x^{2+\alpha}y^\beta+5x^{1+\alpha}y^{3+\beta}) dy=0

For the equation to be exact;

dPdy=dQdx\frac {dP}{dy}=\frac {dQ}{dx}

4(1+β)x1+αyβ+3(4+β)xαy3+β=2(2+α)x1+αyβ+5(1+α)xαy3+β4(1+\beta)x^{1+\alpha}y^\beta+3(4+\beta)x^\alpha y^{3+\beta}=2(2+\alpha)x^{1+\alpha}y^\beta+5(1+\alpha)x^\alpha y^{3+\beta}

Equate like terms together;

4(1+β)=2(2+α)\beta)=2(2+\alpha) ;α=2β\alpha=2\beta

3(4+β)=5(1+α)4+\beta)=5(1+\alpha)

Both give ;

β=1,α=2\beta=1,\alpha=2

The integrating factor xαyβ=x2yx^\alpha y^\beta=x^2yy

P(x,y)dx+Q(x,y)dy=0

Becomes,

(4x3y2+3x2y5)dx+(2x4y+5x3y4)dy=0

Integration of either Pdx or Qdy gives;

x4y2+x3y5=C

Answers;

α=2\alpha=2

β=1\beta=1

Solution;

x4y2+x3y5=C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS