Solution.
All equations will be done by the method of variation of a constant.
1.1
dydx−y4x=y5 1) dydx−y4x=0
xdx=y4dy
∫xdx=∫y4dy
x=Cy4,
where C is some constant.
2) Let be x=C(y)y4,
thenx′=C′(y)y4+4C(y)y3.
We will have
C′y4+4Cy3−y4Cy4=y5.
From here C′(y)=y.
So, C(y)=2y2.
And, x=2y2y4=2y6.
3)
x=Cy4+2y6.
1.2
dxdy+xy=cosx+xsinx 1) dxdy+xy=0
ydy=−xdx
∫ydy=−∫xdx
yx=C
y=xC,
where C is some constant.
2) Let be y=xC(x),
then y′=x2C′(x)x−C(x).
We will have
x2C′x−C+x2C=cosx+xsinx
From here C′(x)=xcosx+sinx.
So, C(x)=xsinx.
And, y=xxsinx=sinx.
3)
y=xC+sinx.
1.3
dydx+yx(2−y)=y1 1) dydx+yx(2−y)=0
xdx=−y2−ydy
∫xdx=−∫y2−ydy
x=y2Cey,
where C is some constant.
2) Let be x=y2C(y)ey,
thenx′=y4(C′(y)ey+C(y)ey)y2−C(y)ey2y.
We will have
y4(C′(y)ey+C(y)ey)y2−C(y)ey2y+y2C(y)eyy2−y=y1.
From here C′(y)=eyy.
So, C(y)=−eyy+1.
And, x=−y2y+1.
3)
x=Cy2ey−y2y+1.2.1.dxdy−2x3y=2x3y3 Divide both parts of equation by y3.
y3y′−2xy23=2x31 Substitution z=y21.
Then z′+x3z=−x31.
1) dxdz+x3z=0
dxdz=−x3z
∫dxdz=−∫x3z
z=x3C,
where C is some constant.
2) Let be z=x3C(x),
then z′=x6C′(x)x3−3x2C(x).
We will have
x3C′−x43C+x43C=−x31
From here C′(x)=−1.
So, C(x)=−x.
And, z=−x21.
3)
z=x3C−x21.
From here
y=±C−xx3.
2.2
dxdy−2xy=−yx2 Divide both parts of equation by y−1 .
y−1y′−2xy2=−x2 Substitution z=y2.
Then z′−xz=−2x2.
1) dxdz−xz=0
zdz=xdx
∫dxdz=−∫x3z
z=Cx,
where C is some constant.
2) Let be z=C(x)x,
then z′=C′(x)x+C(x).
We will have
C′x+C−xCx=−2x2.
From here C′(x)=−2x.
So, C(x)=−x2.
And, z=−x3.
3)
z=Cx−x3.
From here
y=±Cx−x3.
2.3
dxdy+y=2xy2ex
Divide both parts of equation by y2.
y2y′+y1=2xex Substitution z=y1.
Then z′−z=−2xex.
1) dxdz−z=0
zdz=dx
∫zdz=∫dx
z=Cex,
where C is some constant.
2) Let be z=C(x)ex,
then z′=C′(x)ex+C(x)ex.
We will have
C′ex+Cex−Cex=−2xex
From here C′(x)=−2x.
So, C(x)=−x2.
And, z=−x2ex.
3)
Cex−x2ex.
From here
y=C−x2e−x.
Comments