Question #214053

Find the general solutions of the following equations.

LINEAR DE


  1. dx/dy - 4x/y = y5
  2. dy/dx + y/x = cos x + (sinx/x)
  3. dx/dy + x(2-y)/y = 1/y


BERNOULLI'S EQUATION

  1. dy/dx - 3y/2x = y3/2x3
  2. dy/dx - y/2x = -x2/y
  3. dy/dx+ y = 2xy2ex
1
Expert's answer
2021-07-06T16:48:49-0400

Solution.

All equations will be done by the method of variation of a constant.

1.1


dxdy4xy=y5\frac{dx}{dy}-\frac{4x}{y}=y^5

1) dxdy4xy=0\frac{dx}{dy}-\frac{4x}{y}=0

dxx=4dyy\frac{dx}{x}=\frac{4dy}{y}

dxx=4dyy\int\frac{dx}{x}=\int\frac{4dy}{y}

x=Cy4,x=Cy^4,

where C is some constant.

2) Let be x=C(y)y4,x=C(y)y^4,

thenx=C(y)y4+4C(y)y3.x'=C'(y)y^4+4C(y)y^3.

We will have

Cy4+4Cy34yCy4=y5.C'y^4+4Cy^3-\frac{4}{y}Cy^4=y^5.

From here C(y)=y.C'(y)=y.

So, C(y)=y22.C(y)=\frac{y^2}{2}.

And, x=y22y4=y62.x=\frac{y^2}{2}y^4=\frac{y^6}{2}.

3)

x=Cy4+y62.x=Cy^4+\frac{y^6}{2}.


1.2


dydx+yx=cosx+sinxx\frac{dy}{dx}+\frac{y}{x}=\cos{x}+\frac{\sin{x}}{x}

1) dydx+yx=0\frac{dy}{dx}+\frac{y}{x}=0

dyy=dxx\frac{dy}{y}=-\frac{dx}{x}

dyy=dxx\int\frac{dy}{y}=-\int\frac{dx}{x}

yx=Cyx=C

y=Cx,y=\frac{C}{x},

where C is some constant.

2) Let be y=C(x)x,y=\frac{C(x)}{x},

then y=C(x)xC(x)x2.y'=\frac{C'(x)x-C(x)}{x^2}.

We will have

CxCx2+Cx2=cosx+sinxx\frac{C'x-C}{x^2}+\frac{C}{x^2}=\cos{x}+\frac{\sin{x}}{x}

From here C(x)=xcosx+sinx.C'(x)=x\cos{x}+\sin{x}.

So, C(x)=xsinx.C(x)=x\sin{x}.

And, y=xsinxx=sinx.y=\frac{x\sin{x}}{x}=\sin{x}.

3)

y=Cx+sinx.y=\frac{C}{x}+\sin{x}.


1.3


dxdy+x(2y)y=1y\frac{dx}{dy}+\frac{x(2-y)}{y}=\frac{1}{y}

1) dxdy+x(2y)y=0\frac{dx}{dy}+\frac{x(2-y)}{y}=0

dxx=2yydy\frac{dx}{x}=-\frac{2-y}{y}dy

dxx=2yydy\int\frac{dx}{x}=-\int\frac{2-y}{y}dy

x=Ceyy2,x=\frac{Ce^y}{y^2},

where C is some constant.

2) Let be x=C(y)eyy2,x=\frac{C(y)e^y}{y^2},

thenx=(C(y)ey+C(y)ey)y2C(y)ey2yy4.x'=\frac{(C'(y)e^y+C(y)e^y)y^2-C(y)e^y2y}{y^4}.

We will have

(C(y)ey+C(y)ey)y2C(y)ey2yy4+C(y)eyy22yy=1y.\frac{(C'(y)e^y+C(y)e^y)y^2-C(y)e^y2y}{y^4}+\frac{C(y)e^y}{y^2}\frac{2-y}{y}=\frac{1}{y}.

From here C(y)=yey.C'(y)=\frac{y}{e^y}.

So, C(y)=y+1ey.C(y)=-\frac{y+1}{e^y}.

And, x=y+1y2.x=-\frac{y+1}{y^2}.

3)

x=Ceyy2y+1y2.x=C\frac{e^y}{y^2}-\frac{y+1}{y^2}.2.1.dydx3y2x=y32x32.1. \frac{dy}{dx}-\frac{3y}{2x}=\frac{y^3}{2x^3}

Divide both parts of equation by y3.y^3.


yy332xy2=12x3\frac{y'}{y^3}-\frac{3}{2xy^2}=\frac{1}{2x^3}

Substitution z=1y2.z=\frac{1}{y^2}.

Then z+3zx=1x3.z'+\frac{3z}{x}=-\frac{1}{x^3}.

1) dzdx+3zx=0\frac{dz}{dx}+\frac{3z}{x}=0

dzdx=3zx\frac{dz}{dx}=-\frac{3z}{x}

dzdx=3zx\int\frac{dz}{dx}=-\int\frac{3z}{x}

z=Cx3,z=\frac{C}{x^3},

where C is some constant.

2) Let be z=C(x)x3,z=\frac{C(x)}{x^3},

then z=C(x)x33x2C(x)x6.z'=\frac{C'(x)x^3-3x^2C(x)}{x^6}.

We will have

Cx33Cx4+3Cx4=1x3\frac{C'}{x^3}-\frac{3C}{x^4}+\frac{3C}{x^4}=-\frac{1}{x^3}

From here C(x)=1.C'(x)=-1.

So, C(x)=x.C(x)=-x.

And, z=1x2.z=-\frac{1}{x^2}.

3)

z=Cx31x2.z=\frac{C}{x^3}-\frac{1}{x^2}.


From here


y=±x3Cx.y=\pm \sqrt{\frac{x^3}{C-x}}.


2.2


dydxy2x=x2y\frac{dy}{dx}-\frac{y}{2x}=-\frac{x^2}{y}

Divide both parts of equation by y1y^{-1} .


yy1y22x=x2\frac{y'}{y^{-1}}-\frac{y^2}{2x}=-x^2

Substitution z=y2.z={y^2}.

Then zzx=2x2.z'-\frac{z}{x}=-2{x^2}.

1) dzdxzx=0\frac{dz}{dx}-\frac{z}{x}=0

dzz=dxx\frac{dz}{z}=\frac{dx}{x}

dzdx=3zx\int\frac{dz}{dx}=-\int\frac{3z}{x}

z=Cx,z={C}{x},

where C is some constant.

2) Let be z=C(x)x,z={C(x)}{x},

then z=C(x)x+C(x).z'=C'(x)x+C(x).

We will have

Cx+CCxx=2x2.{C'}{x}+C-\frac{Cx}{x}=-2x^2.

From here C(x)=2x.C'(x)=-2x.

So, C(x)=x2.C(x)=-x^2.

And, z=x3.z=-{x^3}.

3)

z=Cxx3.z={C}{x}-{x^3}.


From here


y=±Cxx3.y=\pm \sqrt{{Cx}-{x^3}}.


2.3


dydx+y=2xy2ex\frac{dy}{dx}+y=2xy^2e^x

Divide both parts of equation by y2.y^2.


yy2+1y=2xex\frac{y'}{y^2}+\frac{1}{y}={2xe^x}

Substitution z=1y.z=\frac{1}{y}.

Then zz=2xex.z'-{z}=-2xe^x.

1) dzdxz=0\frac{dz}{dx}-z=0

dzz=dx\frac{dz}{z}=dx

dzz=dx\int\frac{dz}{z}=\int{dx}

z=Cex,z={C}{e^x},

where C is some constant.

2) Let be z=C(x)ex,z={C(x)}{e^x},

then z=C(x)ex+C(x)ex.z'={C'(x)e^x+C(x)}{e^x}.

We will have

Cex+CexCex=2xex{C'}{e^x}+{C}{e^x}-{C}{e^x}=-2xe^x

From here C(x)=2x.C'(x)=-2x.

So, C(x)=x2.C(x)=-x^2.

And, z=x2ex.z=-{x^2}e^x.

3)

Cexx2ex.{C}{e^x}-{x^2}e^x.


From here


y=exCx2.y= \frac{e^{-x}}{C-x^2}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS