Question #213961

The population N(t) of a species of micro-organism in a laboratory setting at any time t is established to vary under the influence of a certain chemical at a rate given by dN/dt=t-2et show that N(t)=t-2et+c.hence if N(0)=400 determine the population when t=5





1
Expert's answer
2021-07-06T14:47:13-0400
dNdt=t2et\dfrac{dN}{dt}=t-2e^t

Then


dN=(t2et)dtdN=(t-2e^t)dt

Integrate both sides


dN=(t2et)dt\int dN=\int (t-2e^t)dt

N(t)=12t22et+cN(t)=\dfrac{1}{2}t^2-2e^t+c

Given N(0)=400N(0)=400


400=12(0)22e0+c=>c=402400=\dfrac{1}{2}(0)^2-2e^0+c=>c=402

N(t)=12t22et+402N(t)=\dfrac{1}{2}t^2-2e^t+402


N(5)=12(5)22e5+402=118N(5)=\dfrac{1}{2}(5)^2-2e^5+402=118


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS