Question #213751

(D²-3DD'+2D'²)z=(2+4x)ex+2y.


1
Expert's answer
2021-07-18T17:27:18-0400

(D23DD+2D)z=(2+4x)ex+2y(D^{2}-3DD^{'}+2D^{'})z=(2+4x)e^{x+2y}

Now , to solve this type of differential equation , we let the following terms of equation as -


D=m D=1D=m\ D^{'}=1


Now the given Differential equation ,will be form as -


So Auxiliary equation will become as -


=m23m+2=0=m^{2}-3m+2=0


=m22mm+2=0=m^{2}-2m-m+2=0


=m(m2)1(m2)=0=m(m-2)-1(m-2)=0


=(m1)(m2)=0=(m-1)(m-2)=0


So this is case where roots are different -


So CF can be written as -


CF=f1(y+x)+f2(y+2x)CF=f_{1}(y+x)+f_{2}(y+2x)


Now PI of the Differential equation can be given as -


PI=1(D23DD+2D)(2+4x)ex+2yPI=\dfrac{1}{(D^{2}-3DD^{'}+2D^{'})}(2+4x)e^{x+2y}


PI=21(D23DD+2D)ex+2y+41(D23DD+2D)xex+2yPI=2\dfrac{1}{(D^{2}-3DD^{'}+2D^{'})}e^{x+2y}+4\dfrac{1}{(D^{2}-3DD^{'}+2D^{'})}xe^{x+2y}


PI=21(D23DD+2D)ex+2yPI=2\dfrac{1}{(D^{2}-3DD^{'}+2D^{'})}e^{x+2y}


Now , this is case of ϕ(ax+by)\phi(ax+by) ;F(a,b) 0;F(a,b)\ {\neq}0


PI=21(123(1)(2)+2(2)eududuPI=2\dfrac{1}{(1^{2}-3(1)(2)+2(2)}\iint e^{u}dudu


PI=2ex+2yPI=-2e^{x+2y}


Now PI of second function , we get -


PI=41(D23DD+2D)xex+2yPI=4\dfrac{1}{(D^{2}-3DD^{'}+2D^{'})}xe^{x+2y}


Now , this is a case of F(x,y)=eax+by,V,F(x,y)=e^{ax+by},V, where V is a function of xx and y .


PI=1ϕ(D,D)eax+by.V=eax+by1ϕ(D+a,D+b)VPI=\dfrac{1}{\phi(D,D^{'})}e^{ax+by}.V=e^{ax+by}\dfrac{1}{\phi(D+a,D^{'}+b)}V



=ex+2y=e^{x+2y} 1((D+1)23(D+1)(D+2)+2(D+2)\dfrac{1}{((D+1)^{2}-3(D+1)(D^{'}+2)+2(D^{'}+2)} xx



=ex+2y1D2D4D1x=e^{x+2y}\dfrac{1}{D^{2}-D^{'}-4D-1}x


=ex+2y1D2[1(DD2+4D+1D2)]1x=e^{x+2y}\dfrac{1}{D^{2}}[1-(\dfrac{D^{'}}{D^{2}}+\dfrac{4}{D}+\dfrac{1}{D^{2}})]^{-1}x =ex+2yx36=\dfrac {e^{x+2y}x^{3}}{6}




Now complete solution is given as -


z=CF+PIz=CF+PI =f1(y+x)+f2(y+2x)+ex+2yx36=f_{1}(y+x)+f_{2}(y+2x)+\dfrac {e^{x+2y}x^{3}}{6}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS