The homogeneous equation
L(y)=(D2−6D+9)y=0
(D−3)2y=0 The general solution of the homogeneous equation is
yh=(A+Bx)e3x Find the particular equation.
L(D)y=e3xL(D)=(D2−6D+9)=(D−3)2 has3 as a double root. The
y1=L′′(3)x2e3x=2x2e3x
L(D)y=e−3x
y2=L(−3)e−3x=(−3−3)2e−3x=36e−3xyp=y1+y2=2x2e3x+36e−3x The general solution of the nonhomogeneous equation is
y=(A+Bx)e3x+2x2e3x+36e−3x
Comments