Question #213694

Solve the equations by the use of the operator D







D²y -6Dy +9y= e^3x + e^-3x



1
Expert's answer
2021-07-19T17:28:44-0400

The homogeneous equation


L(y)=(D26D+9)y=0L(y)=(D^2-6D+9)y=0

(D3)2y=0(D-3)^2y=0

The general solution of the homogeneous equation is

yh=(A+Bx)e3xy_h=(A+Bx)e^{3x}

Find the particular equation.


L(D)y=e3xL(D)y=e^{3x}

L(D)=(D26D+9)=(D3)2L(D)=(D^2-6D+9)=(D-3)^2 ​has33 as a double root. The


y1=x2e3xL(3)=x2e3x2y_1=\dfrac{x^2e^{3x}}{L''(3)}=\dfrac{x^2e^{3x}}{2}

L(D)y=e3xL(D)y=e^{-3x}

y2=e3xL(3)=e3x(33)2=e3x36y_2=\dfrac{e^{-3x}}{L(-3)}=\dfrac{e^{-3x}}{(-3-3)^2}=\dfrac{e^{-3x}}{36}yp=y1+y2=x2e3x2+e3x36y_p=y_1+y_2=\dfrac{x^2e^{3x}}{2}+\dfrac{e^{-3x}}{36}

The general solution of the nonhomogeneous equation is

y=(A+Bx)e3x+x2e3x2+e3x36y=(A+Bx)e^{3x}+\dfrac{x^2e^{3x}}{2}+\dfrac{e^{-3x}}{36}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS